TELONG ENERGY TECHNOLOGY CO., LTD. TELONG

Specification for SEALED LEAD-ACID B A T T E R Y

Model: TL640

Approved By	
Department	
Name	
Title	
Signature/Date	

(Remarks: The above table shall be filled by customer)

lssued by: ___Ming Cai____

Checked by: ___Fu Xiang____

Approved by: __TieGang Dong_

DATE: <u>2010-06-23</u>

TELONG ENERGY TECHNOLOGY CO., LTD.

Building B, Anjia Industrial Zone, HuanGuan South Road, GuanLan Town, ShenZhen, China

TEL:+86-755-29052355 \ 29052353 FAX:+86-755-27981742

E-mail:telongbattery@sztlg.com

http://www.sztlg.com

The rechargeable batteries are lead-lead dioxide systems. The dilute sulfuric acid electrolyte is absorbed by separators and plates and thus immobilized. Should the battery be accidentally overcharged producing hydrogen and oxygen, special one-way valves allow the gases to escape thus avoiding excessive pressure build-up. Otherwise, the battery is completely sealed and is, therefore, maintenance-free, leak proof and usable in any position. GENERAL FEATURES

Absorbent Glass Mat (AGM) technology for efficient gas recombination of up to 99% and freedom from electrolyte maintenance or water adding.

Not restricted for air transport-complies with IATA/ICAO Special Provision A67.

Can be mounted in any orientation.

Computer designed lead, calcium tin alloy grid for high power density.

Long service life, float or cyclic applications.

Maintenance-free operation.

Low self discharge.

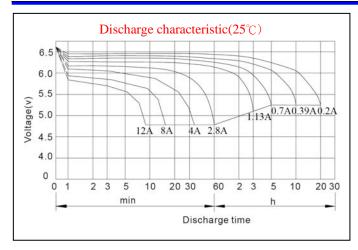
Case and cover available in both standard and flame retardant ABS.

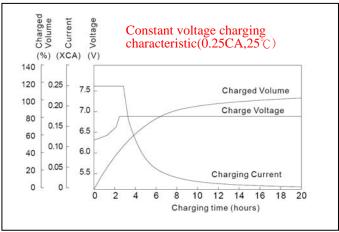
CONSTRUCTION

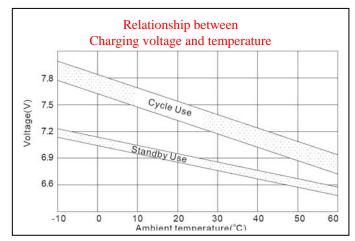
Component	Positive plate	Negative plate	Container	Cover	Safety valve	Terminal	Separator	Electrolyte
Raw material	Lead dioxide	Lead	ABS	ABS	Rubber	Copper	Fiberglass	Sulfuric acid

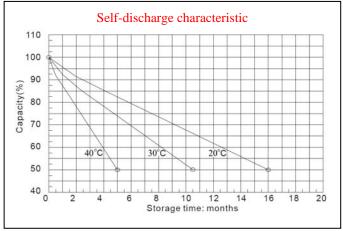
TECHNOLOGY PARAMETER

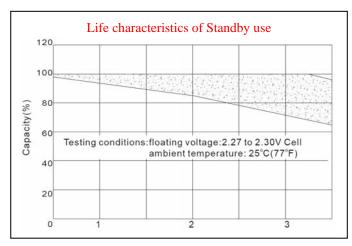
Battery model		TI	740				
Battery moder	TL640						
Nominal voltage	6V						
Number of cell	3						
Capacity	$0.05C_{20}(0.2A)$	0.5C ₂₀ (2.0A)	1C ₂₀ (4A)	3C ₂₀ (12A)			
(25℃)	4.0Ah	3.0Ah	2.2Ah	1.5Ah			
Dimensions	Length	Width	Height	Total Height			
Difficusions	70±1mm	47±1mm	101±1mm	107±1mm			
Approx. weight	0.68Kg						
Internal resistance	Full charged at 25°C: 25mOhms						
Self discharge	3% of capacity declined per month at 20°C (average)						
Operating temperature	Discharge	Cha	rge	Storage			
range	-20∼60°C	-10~	60°C	-20∼60°C			
Max. discharge current (25°C)	60A (5s)						
Short circuit current	200A						




Charging Method


Charging Method(25°C)	Cycle use	Float use		
Charge Voltage	7.307.50V	6.80—6.90V		
Max Charge Current	1.2A	1.2A		
Charging Time	12h(60%DOD)	>48h		
	24h(100%DOD)			


Depth of discharge


Time	Constant current discharge characteristics(25°C) A				Constant power discharge characteristics(25°C) ₩					
1min	12.0	13.5	15.3	16.0	16.7	130	143	158	161	165
5min	10.4	11.5	12.8	13.5	14.0	111	123	136	139	142
15min	6.40	6.72	7.12	7.36	7.68	68.8	73.6	77.2	80.4	82.4
30min	4.24	4.28	4.40	4.52	4.56	47.2	48.4	50.0	51.2	52.4
45 min	3.16	3.24	3.32	3.32	\	36.0	37.5	38.6	38.8	\
1hr	2.56	2.64	2.68	2.68	\	29.5	30.4	31.0	31.0	\
2hr	1.48	1.48	1.52	\	\	17.0	17.1	17.5	\	\
3hr	1.00	1.04	\	\	\	12.2	12.2	\	\	\
5hr	0.68	0.68	\	\	\	7.92	7.92	\	\	\
8hr	0.46	0.48	\	\	\	5.52	5.64	\	\	\
10hr	0.39	0.40	\	\	\	4.56	4.72	\	\	\
20hr	0.20	0.20	\	\	\	2.16	2.16	\	\	\
End Voltage	5.40	5.25	5.10	4.95	4.80	5.40	5.25	5.10	4.95	4.80
V										

