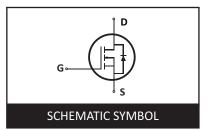
🆅 SEMIWILL


N-CHANNEL POWER MOSFET

DESCRIPTION

This power MOSFET is produced with advanced VDMOS technology of Semiwill. This technology enable power MOSFET to have better characteristics , such as fast switching time, low on resistance , low gate charge and especially excellent avalanche characteristics . This power MOSFET is usually used at high efficient DC to DC converter block, high efficiency switch mode power supplies, power factor correction, electronic lamp ballast based on half bridge.

FEATURES

- High ruggedness
- R_{DS(ON)}(Max. 0.55Ω)@V_{GS}=10V
- Gate Charge (Typ.36nC)
- Improved dv/dt Capability
- 100% Avalanche Tested

Symbol	Parameter		Value	Unit
V _{DSS}	Drain to Source Voltage		400	V
۱ _D	Continuous Drain Current (@T _c =25 °C)		10	А
	Continuous Drain Current (@T _c =100 °C)		6.2	А
I _{DM}	Drain current pulsed	(note 1)	40	A
V _{GS}	Gate to Source Voltage		±30	V
E _{AS}	Single pulsed Avalanche Energy	(note 2)	952	mJ
E _{AR}	Repetitive Avalanche Energy	(note 1)	12.5	mJ
dv/dt	Peak diode Recovery dv/dt	(note 3)	5.0	V/ns
P _D	Total power dissipation (@T _c =25 °C)		125	W
	Derating Factor above 25°C		1.0	W/ºC
T _{STG} , T _J	Operating Junction Temperature & Storage Temperature		-55 ~ + 150	°C
TL	Maximum Lead Temperature for soldering purpose, 1/8 from Case for 5 seconds.		300	°C

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
R _{thjc}	Thermal resistance, Junction to case	1.0	°C/W
R _{thja}	Thermal resistance, Junction to ambient	62.5	2, •••

ABSOLUTE MAXIMUM RATINGS

IRF740

ELECTRICAL CHARACTERISTIC ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Off charact	eristics					
BV _{DSS}	Drain to source breakdown voltage	Vgs=0V,Id=250uA	400	-	-	V
I _{DSS}	Drain to source leakage current	VDS=250V,VGS=0V	-	-	1	uA
		VDs=200V,Tc=125°C	-	-	50	uA
I _{GSS}	Gate to source leakage current, forward	VDS=30V,VGS=0V	-	-	100	nA
	Gate to source leakage current, reverse	VDS=-30V,VGS=0V	-	-	-100	nA
On characte	eristics					
V _{GS(TH)}	Gate threshold voltage	Vds=Vgs,Id=250uA	2.0	-	4.0	V
R _{DS(ON)}	Drain to source on state resistance	VGS=10V,ID=5.0A		0.46	0.55	Ω
Dynamic ch	aracteristics					
C _{iss}	Input capacitance	VGS=0V,VDS=25V,f=1MHz	-	1450	1800	pF
C _{oss}	Output capacitance		-	145	200	
C _{rss}	Reverse transfer capacitance		-	35	45	
t _{d(on)}	Turn on delay time		-	30	50	- ns
tr	Rising time	VDS=200V,ID=10A,RG=250hm (note 4,5)	-	60	150	
t _{d(off)}	Turn off delay time		-	150	300	
t _f	Fall time		-	60	150	
Qg	Total gate charge		-	36	60	nC
Q_{gs}	Gate -source charge	VDS=320V,VGS=10V,ID=10A (note 4,5)	-	6.0	-	
Q _{gd}	Gate -drain charge		-	14	-	

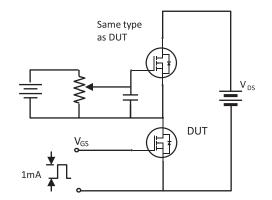
SOURCE TO DRAIN DIODE RATINGS CHARACTERISTICS

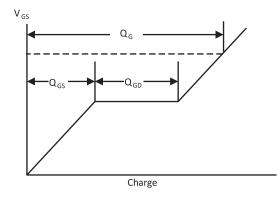
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
١ _s	Continuous source current	Integral reverse p-n Junction	-	-	10	А
I _{SM}	Pulsed source current	diode in the MOSFET	-	-	40	А
V _{SD}	Diode forward voltage drop.	Is=10A, VGs=0V	-	-	1.2	V
T _{rr}	Reverse recovery time	Is=10A, Vgs=0V dIF/dt=100A/us	-	335	-	ns
Q _{rr}	Breakdown voltage temperature		-	3.6	-	nC

Notes

2. L = 18.5mH, IAs=10A, VDD= 50V, Rg=50 Ω , Starting TJ= 25°C

3. $Isd \le 10A$, di/dt = 300A/us, $Vdd \le BVdss$, $Staring TJ=25^{\circ}C$


4. Pulse Test : Pulse Width \leq 300us, duty cycle \leq 2%


5. Essentially independent of operating temperature.

^{1.} Repeatitive rating : pulse width limited by junction temperature.

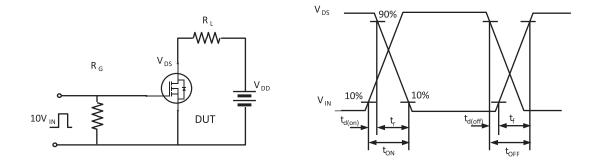
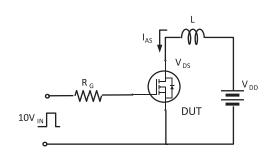

5EMIWILL

Fig. 1. Gate charge test circuit & waveform



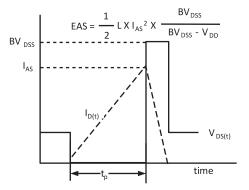
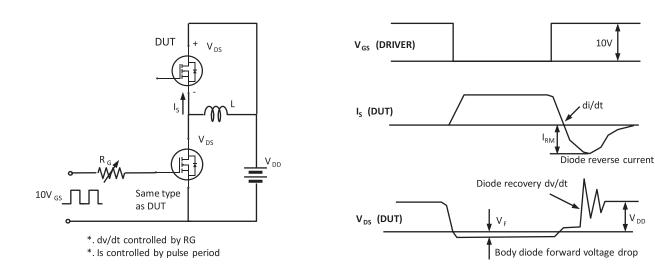


Fig. 2. Switching time test circuit & waveform

Fig. 3. Unclamped Inductive switching test circuit & waveform



5EMIWILL

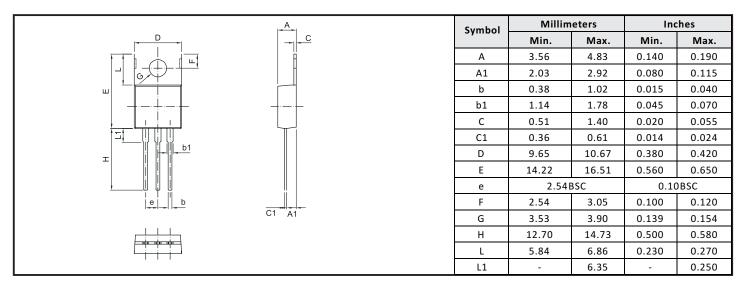

 V_{DD}

Fig. 4. Peak diode recovery dv/dt test circuit & waveform

PACKAGE DIMENSIONS

TO-220AB

5EMIWILL

CONTACT US

Headquarters

A Building Caohejing I&E Park Pujiang Minhang Shanghai China

Web http://www.semiwill.com

By Telephone General: 86-21-34637654 Sales: 86-21-34637458 Customer Service: 86-21-34637172

By Email Sales: sales@semiwill.com Customer Service: cs@semiwill.com Technical Support: fae@semiwill.com

By Fax General: 86-21-34637173 Sales:86-21-39650654

COPYRIGHT ©SEMIWILL 2009 - This literature is subject to all applicable copyright laws and is not for resale in any manner.

SPECIFICATIONS: SEMIWILL reserves the right to change the electrical and or mechanical characteristics described herein without notice.

DESIGN CHANGES: SEMIWILL reserves the right to discontinue product lines without notice and that the final judgement concerning selection and specifications is the buyer's and that in furnishing engineering and technical assistance. SEMIWILL assumes no responsibility with respect to the selection or specifications of such products. SEMIWILL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SEMIWILL assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability without limitation special, consequential or incidental damages.

LIFE SUPPORT POLICY: SEMIWILL products are not authorized for use in life support systems without written consent from the factory.