# Silicon Optronics, Inc.

# SOI968 Color CMOS SXGA (1.3 MPixel) CAMERACHIP<sup>TM</sup>

### **General Description**

The SOI968 CAMERACHIP<sup>TM</sup> is a low voltage CMOS image sensor that provides the full functionality of a single-chip 1.3 Mega-pixel (MP) SXGA (1280 x 1024) camera and image processor in a small-footprint package. The SOI968 CAMERACHIP provides full-frame, sub-sampled or windowed 10-bit images in a wide range of formats, controlled through OmniVision's Serial Camera Control Bus (SCCB) interface.

This product has an image array capable of operating at up to 15 frames per second (fps) with complete user control over image quality, formatting and output data transfer. All required image processing functions, including exposure control, white balance and more, are also programmable through the SCCB interface. In addition, OmniVision CAMERACHIPS use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise, smearing, blooming, etc., to produce a clean, fully stable color image.



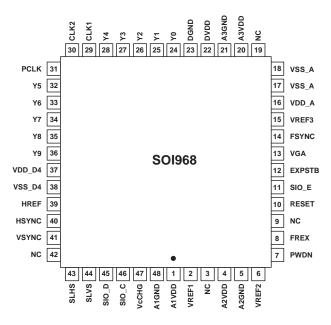
Note: The SOI968 is available in a lead-free package.

### **Features**

- High sensitivity for low-light operation
- 3.3V operating voltage for embedded portable applications
- Standard SCCB CAMERACHIP control interface
- Raw RGB SXGA, VGA (sub-sampled) with complete Windowing control
- Automatic image control functions including Automatic Exposure Control (AEC), Automatic Gain Control (AGC), Automatic White Balance (AWB), Automatic Brightness Control (ABC), Automatic Band Filter (ABF) for 60 Hz noise and Automatic Black-Level Calibration (ABLC)
- Image quality controls include anti-blooming and zero smearing

# **Ordering Information**

| Product       | Package           |  |  |
|---------------|-------------------|--|--|
| SOI968(Color) | CLCC-48 / OLCC-48 |  |  |

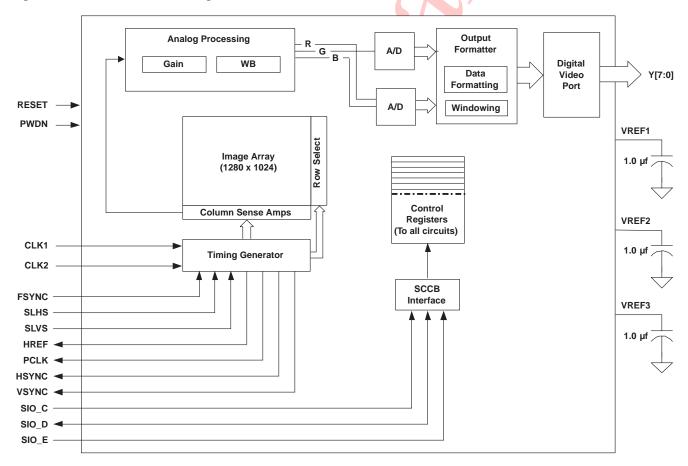

### **Applications**

- Digital still cameras
- Cellular Phones
- Other high-resolution (1280 x 1024) video or snapshot camera applications

# Key Specifications

|               | Array Size      | 1280 x 1024 (SXGA)                   |  |  |
|---------------|-----------------|--------------------------------------|--|--|
|               | Core            | 3.3VDC <u>+</u> 10%                  |  |  |
| Power Supply  | Analog          | 3.3VDC <u>+</u> 10%                  |  |  |
|               | I/O             | 3.3VDC <u>+</u> 10%                  |  |  |
| Power         | Active          | 150 mW                               |  |  |
| Requirements  | Standby         | 30 µW                                |  |  |
| Temperature   | Operation       | 0°C to 70°C                          |  |  |
| Range         | Stable Image    | 0°C to 50°C                          |  |  |
| Output Fo     | ormats (10-bit) | Raw RGB Data                         |  |  |
|               | Lens Size       | 1/3"                                 |  |  |
| Maximum Image | SXGA            | 15 fps                               |  |  |
| Transfer Rate | VGA             | 30 fps                               |  |  |
|               | Sensitivity     | 1.0 V/Lux-sec                        |  |  |
|               | S/N Ratio       | 54 dB                                |  |  |
| D             | ynamic Range    | 60 dB                                |  |  |
|               | Scan Mode       | Progressive/Interlaced               |  |  |
| Maximum Exp   | osure Interval  | 1048 x t <sub>ROW</sub>              |  |  |
|               | Pixel Size      | 4.2 μm x 4.2 μm                      |  |  |
|               | Dark Current    | 28 mV/s                              |  |  |
| Fixed         | Pattern Noise   | < 0.03% of V <sub>PEAK-TO-PEAK</sub> |  |  |
|               | Image Area      | 5.51 mm x 4.36 mm                    |  |  |
| Packag        | je Dimensions   | .560 in. x .560 in. (CLCC)           |  |  |

### Figure 1 SOI968 Pin Diagram

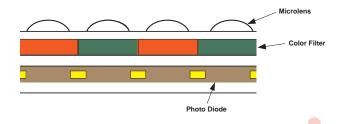



# **Functional Description**

Figure 2 shows the functional block diagram of the SOI968 image sensor. The SOI968 includes:

- Image Sensor Array (1280 x 1024 resolution)
- Analog Signal Processor
  - Gain
  - White Balance (WB)
- Dual A/D Converters
- Output Formatter
- Windowing
- Output Formatter
- Timing Generator
- SCCB Interface
- Digital Video Port

#### Figure 2 Functional Block Diagram




### **Image Sensor Array**

The SOI968 sensor is a 1/3-inch CMOS imaging device. The sensor contains 1,361,856 pixels. However, the maximum output window size is 1296 columns by 1028 rows.

The sensor array design is based on a field integration read-out system with line-by-line transfer and an electronic shutter with a synchronous pixel read-out scheme. Figure 3 shows a cross-section of the image sensor array.

#### Figure 3 Image Sensor Array



# **Analog Signal Processor**

When the column sample/hold circuit has sampled one row of pixels, the pixel data will shift out one-by-one into an analog amplifier.

# Gain

The amplifier gain can either be programmed by the user or controlled by the internal automatic gain control circuit (AGC). The gain adjustment range is 0-24 dB.

# White Balance (WB)

The amplified signals are then balanced with a channel balance block. In this block, the Red/Blue channel gain is increased or decreased to match Green channel luminance level. The adjustment range is 54 dB. This function can be done manually by the user or by the internal automatic white balance (AWB) controller.

### **Dual A/D Converters**

The balanced signal is then digitized by the on-chip 10-bit ADC. It can operate at up to 12 MHz and is fully synchronous to the pixel clock. The actual conversion rate is determined by the frame rate.

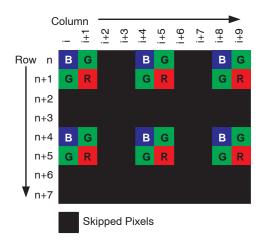
After the pixel data has been digitized, further alterations to the signal can be applied before the data is output:

 Black level calibration (BLC) - This block subtracts the average signal level of optical black pixels to compensate for the temperature and exposure time generated dark current in the pixel output. The user can disable black level calibration.

### **Output Formatter**

# Windowing

The SOI968 allows the user to define window size or region of interest (ROI), as required by the application. Window size setting (in pixels) ranges from  $2 \times 4$  to  $1280 \times 1024$  (SXGA) or  $2 \times 2$  to  $640 \times 480$  (VGA). Note that modifying the window size or window position does not alter the frame or pixel rate. The windowing control merely alters the assertion of the HREF signal to be consistent with the programmed horizontal and vertical ROI. The default window size is  $1280 \times 1024$ .


Note that after writing to register COM7 (0x12) to change the sensor mode, registers related to the sensor's cropping window will be reset back to its default value.

### **Data Formatting**

### Sub-Sampling Mode

The SOI968 can be programmed to output in 640 x 480 (VGA) sized images. In this mode, both horizontal and vertical pixels are sub-sampled to an aspect ratio of 4:2 as illustrated in Figure 4.

### Figure 4 Sub-Sampling Mode



#### **Timing Generator**

In general, the timing generator controls the following functions:

- Frame Exposure Mode Timing
- Frame Rate Timing
- Frame Rate Adjust

#### Frame Exposure Mode Timing

The SOI968 supports frame exposure. Typically, frame exposure mode must work with the aid of an external shutter.

The frame exposure pin, FREX (pin 8) is the frame exposure mode enable pin and the EXPSTB pin (pin 12) serves as the sensor's exposure start trigger (1 = Sensor stays in reset mode, 0 = sensor starts exposure - only effect in frame exposure mode). There are two modes of operation for the frame exposure function.

- Control both FREX and EXPSTB pins Frame Exposure mode can be set by pulling both FREX and EXPSTB pins high at the same time (see Figure 13).
- Control FREX only and keep EXPSTB low In this case, the pre-charge time is tline and sensor exposure time is the period after pre-charge until the shutter closes (see Figure 12).

When the external master device asserts the FREX pin high, the sensor array is quickly pre-charged and stays in reset mode until the EXPSTB pin goes low (sensor exposure time can be defined as the period between EXPSTB low to shutter close). After the FREX pin is pulled low, the video data stream is then clocked to the output port in a line-by-line manner. After completing one frame of data output, the SOI968 will output continuous live video data unless in single frame transfer mode. Figure 12 and Figure 13 show detailed timing of the Frame Exposure mode.

For frame exposure, register AEC (0x10) must be set to 0xFF and register AGC (0x00) should be no larger than 0x10 (maximum 2x gain).

#### Frame Rate Timing

Default frame timing is illustrated in Figure 10 and Figure 11. Refer to Table 1 for the actual pixel rate at different frame rates.

Table 1 Frame and Pixel Rates

| Frame Rate (fps) | 15 | 15 | 10 | 7.5 | 6   | 5 |
|------------------|----|----|----|-----|-----|---|
| PCLK (MHz)       | 48 | 24 | 16 | 12  | 9.6 | 8 |

NOTE:

Based on 48 MHz external clock and internal PLL OFF, and 24 MHz or below external clock and internal PLL ON.

### Frame Rate Adjust

The SOI968 offers three methods for frame rate adjustment:

- Clock prescaler: By changing the system clock divide ratio, the frame rate and pixel rate will change together. Line adjustment:
  - By adding a dummy pixel timing in each line, the frame rate can be changed while leaving the pixel rate as is.
- Vertical sync adjustment: By adding dummy line periods to the vertical sync period, the frame rate can be altered while the pixel rate remains the same.

After changing registers EXHC-H (0x2A) and EXHC-L (0x2B) to adjust the dummy pixels, it is necessary to write to register COM7 (0x12) or CLKRC (0x11) to reset the counter. Generally, OmniVision suggests users write to register COM7 (0x12) (to change the sensor mode) as the last one. However, if you want to adjust the cropping window, it is necessary to write to those registers after changing register COM7 (0x12). To use COM7 to reset the counter, it is necessary to generate a pulse on resolution control register bit COM7[6].

#### **Channel Average Calculator**

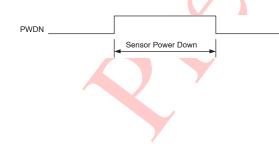
The SOI968 provides average output level data for the R/G/B channels along with frame-averaged luminance level. Access to the data is provided via the serial control port. Average values are calculated from 128 pixels per line (64 pixels per line in VGA).

### Reset

The **RESET** pin (pin 10) is active high. There is an internal pull-down (weak) resistor in the sensor so the default status of the **RESET** pin is low.

#### Figure 5 RESET Timing Diagram




There are two ways for a sensor reset:

- Hardware reset Pulling the RESET pin high and keeping it high for at least 1 ms. As shown in Figure 5, after a reset has been initiated, the sensor will be most stable after the period shown as 4096 External Clock.
- Software reset Writing 0x80 to register 0x12 (see "COM7" on page 19) for a software reset. If a software reset is used, a reset operation done twice is recommended to make sure the sensor is stable and ready to access registers. When performing a software reset twice, the second reset should be initiated after the 4096 External Clock period as shown in Figure 5.

#### **Power-Down Mode**

The PWDN pin is active high. There is an internal pull-down (weak) resistor in the sensor so the default status of the PWDN pin is low.

#### Figure 6 PWDN Timing Diagram



Two methods of power-down or standby operation are available with the SOI968.

- Hardware power-down may be selected by pulling the PWDN pin high. When in hardware power-down, the standby current will be less then 10 μA.
- Software power-down can be effected by setting the COM2[4] register bit high. Standby current will be less then 1 mA when in software power-down.

# SCCB Interface

The SOI968 provides an on-chip SCCB serial control port that allows access to all internal registers, for complete control and monitoring of SOI968 operation. Refer to *OmniVision Technologies Serial Camera Control Bus* (SCCB) Specification for detailed usage of the serial control port.

### **Slave Operation Mode**

The SOI968 can be programmed to operate in slave mode (default is master mode).

### **Digital Video Port**

#### **MSB/LSB Swap**

The SOI968 has a 10-bit digital video port. The MSB and LSB can be swapped with the control registers.

### **Line/Pixel Timing**

The SOI968 digital video port can be programmed to work in either master or slave mode.

# Pin Description

# Table 2Pin Description

| Pin Number | Name   | Pin Type               | Function/Description                                                                             |
|------------|--------|------------------------|--------------------------------------------------------------------------------------------------|
| 01         | A1VDD  | Power                  | Analog VDD                                                                                       |
| 02         | VREF1  | Analog                 | Sensor array reference - connect to ground using a 0.1 $\mu$ F capacitor                         |
| 03         | NC     | —                      | No connection                                                                                    |
| 04         | A2VDD  | Power                  | Analog VDD                                                                                       |
| 05         | A2GND  | Power                  | Analog ground                                                                                    |
| 06         | VREF2  | Analog                 | Sensor array reference - connect to ground using a 0.1 µF capacitor                              |
| 07         | PWDN   | Input (0) <sup>a</sup> | Sets device to power down standby mode, active high                                              |
| 08         | FREX   | Input (0)              | Snapshot trigger                                                                                 |
| 09         | NC     | —                      | No connection                                                                                    |
| 10         | RESET  | Input (0)              | Clears all registers and resets them to their default values, active high                        |
| 11         | SIO_E  | Input (0)              | SCCB interface enable, low to turn on SCCB                                                       |
| 12         | EXPSTB | Input (0)              | Frame exposure start trigger                                                                     |
| 13         | VGA    | Input (0)              | Sensor Resolution Selection<br>0: SXGA resolution (1280 x 1024)<br>1: VGA resolution (640 x 480) |
| 14         | FSYNC  | Input (0)              | Frame synchronization input                                                                      |
| 15         | VREF3  | Analog                 | Sensor array reference - connect to ground using a 1 µF capacitor                                |
| 16         | VDD_A  | Power                  | Analog VDD                                                                                       |
| 17         | VSS_A  | Power                  | Analog ground                                                                                    |
| 18         | VSS_A  | Power                  | Analog ground (substrate)                                                                        |
| 19         | NC     |                        | No connection                                                                                    |
| 20         | A3VDD  | Power                  | Analog VDD                                                                                       |
| 21         | A3GND  | Power                  | Analog ground                                                                                    |
| 22         | DVDD   | Power                  | Digital VDD (3.3V)                                                                               |
| 23         | DGND   | Power                  | Digital ground                                                                                   |
| 24         | Y0     | Output                 | Digital video output bit[0]                                                                      |
| 25         | Y1     | Output                 | Digital video output bit[1]                                                                      |
| 26         | Y2     | Output                 | Digital video output bit[2]                                                                      |
| 27         | Y3     | Output                 | Digital video output bit[3]                                                                      |
| 28         | Y4     | Output                 | Digital video output bit[4]                                                                      |
| 29         | CLK1   | Input (0)              | Crystal clock input                                                                              |
| 30         | CLK2   | Output                 | Crystal clock output                                                                             |

| Pin Number | Name   | Pin Type  | Function/Description                                                                          |
|------------|--------|-----------|-----------------------------------------------------------------------------------------------|
| 31         | PCLK   | Output    | Pixel clock output                                                                            |
| 32         | Y5     | Output    | Digital video output bit[5]                                                                   |
| 33         | Y6     | Output    | Digital video output bit[6]                                                                   |
| 34         | Y7     | Output    | Digital video output bit[7]                                                                   |
| 35         | Y8     | Output    | Digital video output bit[8]                                                                   |
| 36         | Y9     | Output    | Digital video output bit[9]                                                                   |
| 37         | VDD_D4 | Power     | Digital output VDD                                                                            |
| 38         | VSS_D4 | Power     | Digital output ground                                                                         |
| 39         | HREF   | Output    | Horizontal reference output                                                                   |
| 40         | HSYNC  | Output    | Horizontal synchronization output                                                             |
| 41         | VSYNC  | Output    | Vertical synchronization output                                                               |
| 42         | NC     | —         | No connection                                                                                 |
| 43         | SLHS   | Input (0) | Slave mode horizontal synchronization input                                                   |
| 44         | SLVS   | Input (0) | Slave mode vertical synchronization input                                                     |
| 45         | SIO_D  | I/O       | SCCB serial interface data I/O                                                                |
| 46         | SIO_C  | Input (0) | SCCB serial interface clock                                                                   |
| 47         | VcCHG  | Analog    | Sensor reference - internal connect to pin 15. Connect to ground using a 1 $\mu$ F capacitor. |
| 48         | A1GND  | Power     | Analog ground                                                                                 |

| Table 2 | Pin Description | (Continued) | ) |
|---------|-----------------|-------------|---|
|         |                 | (Continuou) | £ |

a. Input (0) represents an internal pull-down resistor.

### **Electrical Characteristics**

#### Table 3 Absolute Maximum Ratings

| Ambient Storage Temperature                        |                                 | -40°C to +125°C |
|----------------------------------------------------|---------------------------------|-----------------|
|                                                    | V <sub>DD-A</sub>               | 3.6V            |
| Supply Voltages (with respect to Ground)           | V <sub>DD-C</sub>               | 3.6V            |
|                                                    | V <sub>DD-IO</sub>              | 3.6V            |
| All Input/Output Voltages (with respect to Ground) | -0.3V to V <sub>DD-IO</sub> +1V |                 |
| Lead Temperature, Surface-mount process            | +230°C                          |                 |
| ESD Rating, Human Body model                       |                                 | 2000V           |

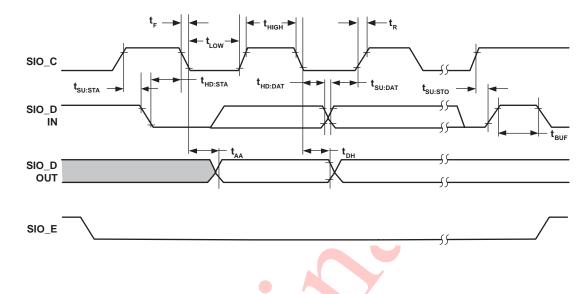
**NOTE:** Exceeding the Absolute Maximum ratings shown above invalidates all AC and DC electrical specifications and may result in permanent device damage.

| Symbol                | Parameter                        | Condition                                    | Min                      | Тур | Мах                      | Unit |
|-----------------------|----------------------------------|----------------------------------------------|--------------------------|-----|--------------------------|------|
| V <sub>DD-A</sub>     | DC supply voltage – Analog       | 3.3V <u>+</u> 10%                            | 3.0                      | 3.3 | 3.6                      | V    |
| V <sub>DD-IO</sub>    | DC supply voltage – Digital I/O  | 3.3V <u>+</u> 10%                            | 3.0                      | 3.3 | 3.6                      | V    |
| V <sub>DD-C</sub>     | DC supply voltage – Digital Core | 3.3V <u>+</u> 10%                            | 3.0                      | 3.3 | 3.6                      | V    |
| I <sub>DDA</sub>      | Active (Operating) Current       | See Note <sup>a</sup>                        |                          | 40  | 60                       | mA   |
| I <sub>DDS-SCCB</sub> | Standby Current                  | See Note <sup>b</sup>                        |                          | 1   |                          | mA   |
| I <sub>DDS-PWDN</sub> | Standby Current                  | See Note                                     |                          | 10  |                          | μA   |
| V <sub>IH</sub>       | Input voltage HIGH               | CMOS                                         | 0.7 x V <sub>DD-IO</sub> |     |                          | V    |
| V <sub>IL</sub>       | Input voltage LOW                |                                              |                          |     | 0.3 x V <sub>DD-IO</sub> | V    |
| V <sub>OH</sub>       | Output voltage HIGH              | CMOS<br>(I <sub>OH</sub> / I <sub>OL</sub> ) | 0.9 x V <sub>DD-IO</sub> |     |                          | V    |
| V <sub>OL</sub>       | Output voltage LOW               |                                              |                          |     | 0.1 x V <sub>DD-IO</sub> | V    |
| I <sub>OH</sub>       | Output current HIGH              | See Note <sup>c</sup>                        | 8                        |     |                          | mA   |
| I <sub>OL</sub>       | Output current LOW               |                                              | 15                       |     |                          | mA   |
| ١                     | Input/Output Leakage             | GND to V <sub>DD-IO</sub>                    |                          |     | ± 1                      | μA   |

a.  $V_{DD-A} = V_{DD-IO} = 3.3V, V_{DD-C} = 2.5V$ 

 $I_{DDA} = \sum \{I_{DD-A} + I_{DD-IO} + I_{DD-C}\}$ , SXGA, f<sub>CLK</sub> = 24MHz at 15 fps, 25 pF plus TTL loading

b.  $V_{DD-A} = V_{DD-IO} = 3.3V, V_{DD-C} = 2.5V$ 


 $I_{DDS:SCCB}$  refers to a SCCB-initiated Standby, while  $I_{DDS:PWDN}$  refers to a PWDN pin-initiated Standby c. Standard Output Loading = 25pF, 1.2K $\Omega$  to 3V

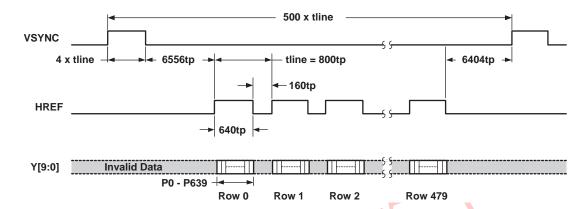
| Symbol               | Parameter                                                                                                                                                                                                                         | Min | Тур          | Мах | Unit |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-----|------|--|--|--|--|
| Functional Cl        | Functional Characteristics                                                                                                                                                                                                        |     |              |     |      |  |  |  |  |
|                      | A/D Resolution                                                                                                                                                                                                                    |     | 10           |     | Bits |  |  |  |  |
|                      | A/D Differential Non-Linearity                                                                                                                                                                                                    |     | <u>+</u> 1/2 |     | LSB  |  |  |  |  |
|                      | A/D Integral Non-Linearity                                                                                                                                                                                                        |     | <u>+</u> 1   |     | LSB  |  |  |  |  |
|                      | AGC Range                                                                                                                                                                                                                         |     |              | 21  | dB   |  |  |  |  |
|                      | Red/Blue Adjustment Range                                                                                                                                                                                                         |     | 12           |     | dB   |  |  |  |  |
| Inputs (PWD          | I, CLK, RESET)                                                                                                                                                                                                                    |     |              |     | _    |  |  |  |  |
| f <sub>CLK</sub>     | Input Clock Frequency                                                                                                                                                                                                             | 8   | 24           | 48  | MHz  |  |  |  |  |
| t <sub>CLK</sub>     | Input Clock Period                                                                                                                                                                                                                | 12  | 42           | 21  | ns   |  |  |  |  |
| t <sub>CLK:DC</sub>  | Clock Duty Cycle                                                                                                                                                                                                                  | 45  | 50           | 55  | %    |  |  |  |  |
| t <sub>S:RESET</sub> | Setting time after software/hardware reset                                                                                                                                                                                        |     |              | 1   | ms   |  |  |  |  |
| t <sub>S:REG</sub>   | Settling time for register change (10 frames required)                                                                                                                                                                            |     |              | 300 | ms   |  |  |  |  |
| AC<br>Conditions:    | • $V_{DD}$ : $V_{DD-C} = 2.5V$ , $V_{DD-A} = V_{DD-IO} = 3.3V$<br>• Rise/Fall Times: I/O: 5ns, Maximum<br>SCCB: 300ns, Maximum<br>• Input Capacitance: 10pf<br>• Output Loading: 25pF, 1.2K $\Omega$ to 3V<br>• $f_{CLK}$ : 24MHz |     |              |     |      |  |  |  |  |
|                      |                                                                                                                                                                                                                                   |     |              |     |      |  |  |  |  |

# Table 5Functional and AC Characteristics ( $0^{\circ}C < T_A < 70^{\circ}C$ )

# **Timing Specifications**


# Figure 7 SCCB Timing Diagram

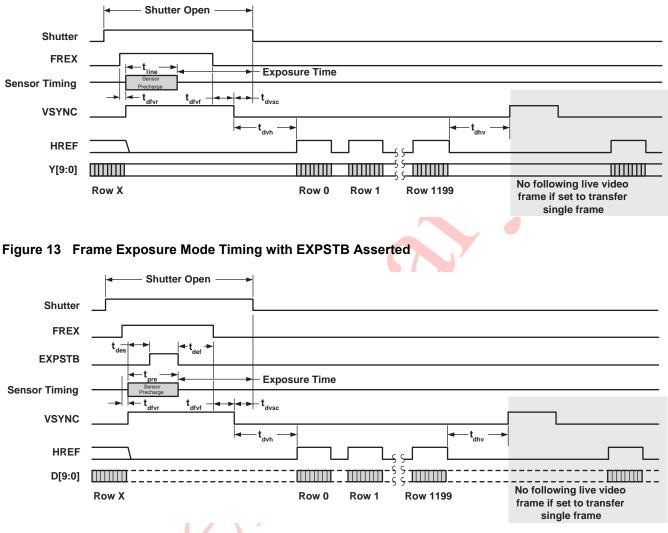



| Table 6 | SCCB Timing Specifications |
|---------|----------------------------|
|---------|----------------------------|

| Symbol                         | Parameter                      | Min | Тур | Мах | Unit |
|--------------------------------|--------------------------------|-----|-----|-----|------|
| f <sub>SIO_C</sub>             | Clock Frequency                |     |     | 400 | KHz  |
| t <sub>LOW</sub>               | Clock Low Period               | 1.3 |     |     | μS   |
| t <sub>HIGH</sub>              | Clock High Period              | 600 |     |     | ns   |
| t <sub>AA</sub>                | SIO_C low to Data Out valid    | 100 |     | 900 | ns   |
| t <sub>BUF</sub>               | Bus free time before new START | 1.3 |     |     | μS   |
| t <sub>HD:STA</sub>            | START condition Hold time      | 600 |     |     | ns   |
| t <sub>SU:STA</sub>            | START condition Setup time     | 600 |     |     | ns   |
| t <sub>HD:DAT</sub>            | Data-in Hold time              | 0   |     |     | μS   |
| t <sub>SU:DAT</sub>            | Data-in Setup time             | 100 |     |     | ns   |
| t <sub>SU:STO</sub>            | STOP condition Setup time      | 600 |     |     | ns   |
| t <sub>R,</sub> t <sub>F</sub> | SCCB Rise/Fall times           |     |     | 300 | ns   |
| t <sub>DH</sub>                | Data-out Hold time             | 50  |     |     | ns   |






# Figure 11 VGA Frame Timing



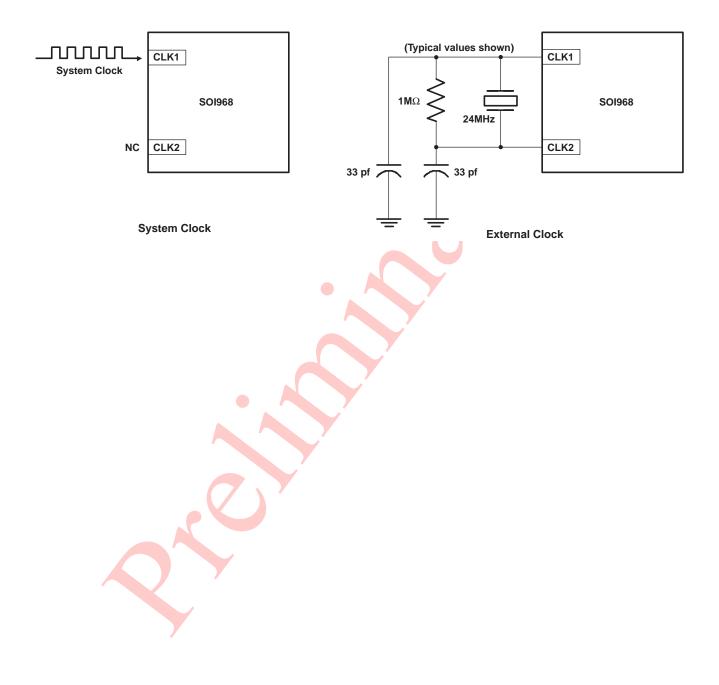
### Table 7 Pixel Timing Specification

| Symbol            | Parameter                                | Min | Тур | Мах   | Unit |
|-------------------|------------------------------------------|-----|-----|-------|------|
| t <sub>p</sub>    | PCLK period                              |     |     | 41.66 | ns   |
| t <sub>pr</sub>   | PCLK rising time                         |     | 10  |       | ns   |
| t <sub>pf</sub>   | PCLK falling time                        |     | 5   |       | ns   |
| t <sub>dphr</sub> | PCLK negative edge to HREF rising edge   | 0   |     | 5     | ns   |
| t <sub>dphf</sub> | PCLK negative edge to HREF negative edge | 0   |     | 5     | ns   |
| t <sub>dpd</sub>  | PCLK negative edge to data output delay  | 0   |     | 5     | ns   |
| t <sub>su</sub>   | Data bus setup time                      | 15  |     |       | ns   |
| t <sub>hd</sub>   | Data bus hold time                       | 8   |     |       | ns   |



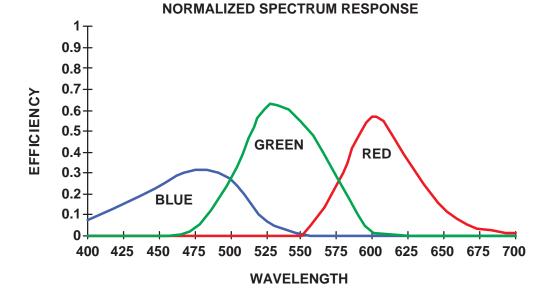


### Table 8 Frame Exposure Mode Timing Specifications

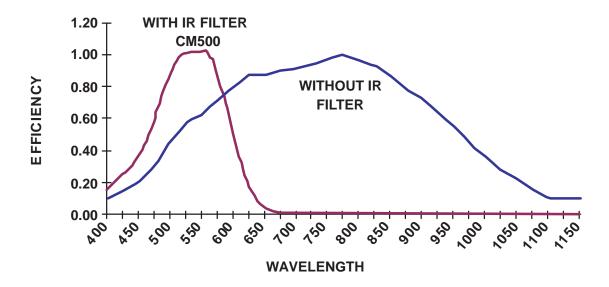

| Symbol | Min | Тур          | Мах | Unit  |
|--------|-----|--------------|-----|-------|
| tline  |     | 1520 (SXGA)  |     | tp    |
|        | 7   | 800 (VGA)    |     | tp    |
| tvs    |     | 4            |     | tline |
| tdfvr  | 8   |              | 9   | tp    |
| tdfvf  |     |              | 4   | tline |
| tdvsc  |     |              | 2   | tline |
| tdhv   |     | 21044 (SXGA) |     | tp    |
| unv    |     | 6402 (VGA)   |     | tp    |
| tdvh   |     | 12396 (SXGA) |     | tp    |
|        |     | 6558 (VGA)   |     | tp    |
| tdhso  | 0   |              |     | ns    |

**NOTE** 1) FREX must stay high long enough to ensure the entire sensor has been reset.

2) Shutter must be closed no later then 3040tp (1600tp for VGA) after VSYNC falling edge.


# **Clock Options**

### Figure 14 System and External Clock Options




## SOI968 Light Response

### Figure 15 SOI968 Light Response



#### **MONOCHROME RESPONSE**



### **Register Set**

Table 9 provides a list and description of the Device Control registers contained in the SOI968. The device slave addresses are 60 for write and 61 for read.

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                                                     |
|------------------|------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00               | AGC              | 00               | RW  | AGC – Gain control gain setting, MSB in register REG3C[0] (0x3C)<br>Bit[7:0]: Gain control gain setting<br>AGC Enabled: Updated automatically<br>AGC Disabled: User manually stores and updates value                                                                                                                                           |
| 01               | BLUEH            | 80               | RW  | AWB – Blue channel gain setting<br>• Range: [00] to [FF] (1/3x to 3x)<br>If BLUEH[7] = 1, then Blue gain = 1 + BLUEH[6:0]/64<br>If BLUEH[7] = 0, then Blue gain = 1/(1 + BLUEH_B[6:0]/64), where<br>BLUEH_B[6:0] is the bit reverse of BLUEH[6:0]<br>AWB Enabled: Updated automatically<br>AWB Disabled: User manually stores and updates value |
| 02               | REDH             | 80               | RW  | AWB – Red channel gain setting<br>• Range: [00] to [FF] (1/3x to 3x)<br>If REDH[7] = 1, then Red gain = 1 + REDH[6:0]/64<br>If REDH[7] = 0, then Red gain = 1/(1 + REDH_B[6:0]/64), where<br>REDH_B[6:0] is the bit reverse of REDH[6:0]<br>AWB Enabled: Updated automatically<br>AWB Disabled: User manually stores and updates value          |
| 03               | СОМО             | 4F               | RW  | Common Control 0<br>Bit[7:4]: AWB update threshold<br>Bit[3:2]: VREFED[1:0] vertical window line end, least<br>significant 2 bits (see VREFED (0x1A) for 8 MSBs)<br>Bit[1:0]: VREFST[1:0] vertical window line start, least<br>significant 2 bits (see VREFST (0x19) for 8 MSBs)                                                                |
| 04               | COM1             | 02               | RW  | Common Control 1<br>Bit[7:6]: AWB – Step select<br>00: 255 steps<br>01: 64 steps<br>10: 128 steps<br>11: 64 steps<br>Bit[5:4]: AWB – Update speed select<br>00: Slow<br>01: Slowest<br>10: Fast<br>11: Fast<br>Bit[3]: Reserved<br>Bit[2:0]: AEC[2:0], 3 LSBs<br>(8 MSBs in register AEC (0x10))                                                |
| 05               | BAVG             | 00               | RW  | Digital B Channel Average<br>Automatically updated by AGC/AEC/AWB                                                                                                                                                                                                                                                                               |

| Table 9 | Device Conti        | ol Register List  |
|---------|---------------------|-------------------|
|         | <b>DO1100 00110</b> | of itogiotor Liot |

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 06               | GbAVG            | 00               | RW  | G Channel Average<br>Picked G pixels in the same line with B pixels.<br>Automatically updated by AGC/AEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07               | GrAVG            | 00               | RW  | G Channel Average<br>Picked G pixels in the same line with R pixels.<br>Automatically updated by AGC/AEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 08               | RAVG             | 00               | RW  | Digital R Channel Average<br>Automatically updated by AGC/AEC/AWB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 09               | COM2             | 01               | RW  | Common Control 2<br>Bit[7:5]: Reserved<br>Bit[4]: Sleep/ power-down mode enable<br>0: Normal<br>1: Sleep mode<br>Bit[3:2]: Reserved<br>Bit[1:0]: I/O pad drive select<br>00: Weakest<br>01: Double capability<br>10: Double capability<br>11: Triple drive current                                                                                                                                                                                                                                                                                                                                                                |
| 0A               | PIDH             | 96               | R   | Product ID Number MSB (Read only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0B               | PIDL             | 28               | R   | Product ID Number LSB (Read only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0C               | COM3             | 20               | RW  | Common Control 3         Bit[7]:       Reserved         Bit[6]:       Swap MSB and LSB at the output port         0:       No swap         1:       Swap         Bit[5:3]:       Reserved         Bit[2]:       Output based on two pixel average         0:       Disable         1:       Enable         Bit[1]:       Sensor precharge voltage selection         0:       Selects internal reference as precharge voltage         1:       Selects SVDD as precharge voltage         Bit[0]:       Snapshot option         0:       Enable live video output after snapshot sequence         1:       Output single frame only |

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|------------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OD               | COM4             | 40               | RW  | Common Control 4<br>Bit[7]: Reserved<br>Bit[6]: Anti-blooming control<br>0: Anti-blooming ON<br>1: Anti-blooming OFF<br>Bit[5:3]: Reserved<br>Bit[2]: Clock output power-down pin status<br>0: Tri-state the VSYNC, PCLK, HREF, and<br>CHSYNC pins upon power-down<br>1: VSYNC, PCLK, HREF, and CHSYNC hold at last<br>states before power-down<br>1: VSYNC, PCLK, HREF, and CHSYNC hold at last<br>states before power-down<br>Bit[1]: Data output pin status selection at power-down<br>0: Tri-state data output pin at power-down<br>1: Data output pin hold at last status before<br>power-down<br>Bit[0]: AZWindow control<br>0: Enable AZWin output<br>1: No AZWin output |
| 0E               | COM5             | 05               | RW  | Common Control 5<br>Bit[7]: System clock selection<br>0: Use 24 MHz system clock<br>1: Use 48 MHz system clock<br>Bit[6:0]: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| OF               | COM6             | 73               | RW  | Common Control 6<br>Bit[7]: Optical black output selection<br>0: Disabled<br>1: Enabled<br>Bit[6:4]: Reserved<br>Bit[3]: Channel offset adjustment<br>0: Disable offset adjustment<br>1: Enable offset adjustment, B/Gb/Gr/R channel<br>offset levels stored in registers BBIAS, GbBIAS,<br>GrBIAS, and RBIAS, respectively<br>Bit[2:1]: Reserved<br>Bit[0]: ADC black level calibration enable<br>0: Disabled<br>1: Enabled                                                                                                                                                                                                                                                    |
| 10               | AEC              | 3E               | RW  | AEC[10:3]: Automatic Exposure Control 8 MSBs<br>(least significant 3 bits in register COM1[2:0] (0x04).<br>T <sub>EX</sub> = t <sub>LINE</sub> x AEC[10:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|------------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11               | CLKRC            | 00               | RW  | Clock Rate Control<br>Bit[7]: Internal PLL ON/OFF selection<br>0: PLL disabled<br>1: PLL enabled<br>Bit[6]: Reserved<br>Bit[5:0]: Clock divider<br>CLK = XCLK1/(decimal value of CLKRC[5:0] + 1)                                                                                                                                                                                                                                                                                                                                                                                     |
| 12               | COM7             | 00               | RW  | Common Control 7<br>Bit[7]: SRST<br>1: Initiates soft reset. All register are set to factory<br>default values after which the chip resumes<br>normal operation<br>Bit[6]: Resolution selection<br>0: SXGA<br>1: VGA<br>Bit[5]: Reserved<br>Bit[4]: Black line output selection<br>0: Only output pixel lines defined by window<br>registers<br>1: Output all physical pixel lines from optical black<br>line<br>Bit[3]: Reserved<br>Bit[2]: R/B gain display on BGAIN<br>0: Both R/B GAIN<br>1: BGAIN only<br>Bit[1]: Color bar test pattern<br>0: OFF<br>1: ON<br>Bit[0]: Reserved |
|                  |                  |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13               | COM8             | 8F               | RW  | Common Control 8<br>Bit[7]: AEC speed selection<br>0: Normal<br>1: Faster AEC correction<br>Bit[6]: AEC speed/step selection<br>0: Small steps (slow)<br>1: Big steps (fast)<br>Bit[5]: Banding filter option<br>0: OFF<br>1: ON, set minimum exposure to 1/120s<br>Bit[4]: Banding filter option<br>0: Set to 0, if system clock is 48 MHz and the PLL<br>is ON.<br>1: Set to 1, if system clock is 24 MHz and the PLL<br>is ON or if the system clock is 48 MHz and the PLL<br>is ON or if the system clock is 48 MHz and the PLL<br>is ON or if the system clock is 48 MHz and the PLL<br>is ON or if the system clock is 48 MHz and the PLL<br>is ON or if the system clock is 48 MHz and the<br>PLL is OFF.<br>Bit[3]: Reserved<br>Bit[2]: AGC auto/manual control selection<br>0: Manual<br>1: Auto<br>Bit[0]: AEC Exposure control<br>0: Manual<br>1: Auto |
| 14               | СОМ9             | 4A               | RW  | Common Control 9         Bit[7:5]:       AGC gain ceiling         001:       4x         010:       8x         011:       16x         100:       32x         101:       64x         11x:       64x         11x:       64x         Bit[3]:       Auto banding filter         0:       Banding filter is always ON/OFF depending on the COM8[5] setting         1:       Automatically disable banding filter if the light is strong         Bit[2]:       VSYNC drop option         0:       Always output VSYNC         1:       VSYNC is dropped if frame data is dropped         Bit[1]:       Frame data drop option         0:       Disable data drop         1:       Drop data frame if exposure is not within tolerance. In AEC mode, data is dropped when data is out of range         Bit[0]:       Reserved                                             |

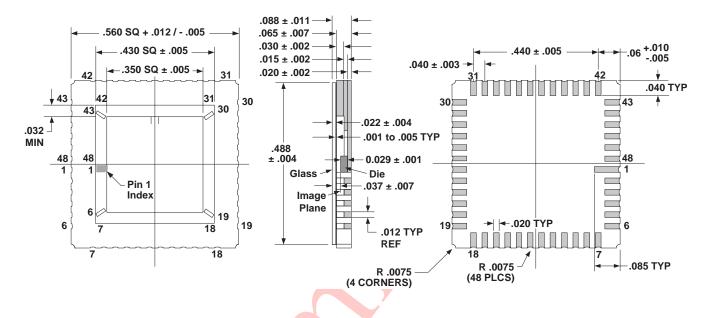
Version 2.0, August 28, 2006

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15               | COM10            | 00               | RW  | Common Control 10<br>Bit[7]: HSYNC pin output swap<br>0: HSYNC<br>1: HREF<br>Bit[6]: HREF pin output swap<br>0: HREF<br>1: HSYNC<br>Bit[5]: PCLK output selection<br>0: PCLK always output<br>1: PCLK output qualified by HREF<br>Bit[4]: PCLK edge selection<br>0: Data valid on PCLK falling edge<br>1: Data valid on PCLK falling edge<br>1: Data valid on PCLK rising edge<br>Bit[3]: HREF output polarity<br>0: Output positive HREF<br>1: Output negative HREF, HREF negative for data<br>valid<br>Bit[2]: Reserved<br>Bit[1]: VSYNC polarity<br>0: Positive<br>1: Negative<br>Bit[0]: HSYNC polarity<br>0: Positive<br>1: Negative |
| 16               | RSVD             | XX               | -   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17               | HREFST           | 1D<br>13 (VGA)   | RW  | Horizontal Window start most significant 8 bits<br>(LSB in register COM12[2:0] (0x32)).<br>Bit[7:0]: HREFST[10:3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18               | HREFED           | BD<br>63 (VGA)   | RW  | Horizontal Window end most significant 8 bits<br>(LSB in register COM12[5:3] (0x32).<br>Bit[7:0]: HREFED[10:3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19               | VREFST           | 00               | RW  | Vertical Window line start most significant 8 bits<br>(LSB in register COM0[1:0] (0x03)).<br>Bit[7:0]: VREFST[9:2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1A               | VREFED           | 80               | RW  | Vertical Window line end most significant 8 bits<br>(LSB in register COM0[3:2] (0x03)).<br>Bit[7:0]: VREFED[9:2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1B               | SHIFT            | 00               | RW  | Pixel Shift<br>Bit[7:0]: Pixel shift - pixel delay count. Provides a method to<br>fine tune the output timing of the pixel data relative to<br>the HREF pulse. It physically shifts the video data<br>ouptut time in units of pixel clock counts. The largest<br>delay count is [FF] and is equal to 255 x PCLK.                                                                                                                                                                                                                                                                                                                          |
| 1C               | MIDH             | 7F               | R   | Manufacturer ID Byte – High (Read only = 0x7F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1D               | MIDL             | A2               | R   | Manufacturer ID Byte – Low (Read only = 0xA2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                      |
|------------------|------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1E-1F            | RSVD             | XX               | -   | Reserved                                                                                                                                                                                                                                                                                                         |
| 20               | BOS              | 80               | RW  | B Channel Offset Adjustment - auto controlled by internal circuit if<br>COM6[0] = 1 (0x0F)<br>Bit[7]: Offset direction<br>0: Add BOS[6:0]<br>1: Subtract BOS[6:0]<br>Bit[6:0]: B channel offset adjustment value                                                                                                 |
| 21               | GbOS             | 80               | RW  | Gb Channel Offset Adjustment - auto controlled by internal circuit if<br>COM6[0] = 1 (0x0F)<br>Bit[7]: Offset direction<br>0: Add GbOS[6:0]<br>1: Subtract GbOS[6:0]<br>Bit[6:0]: Gb channel offset adjustment value                                                                                             |
| 22               | GrOS             | 80               | RW  | Gr Channel Offset Adjustment - auto controlled by internal circuit if<br>COM6[0] = 1 (0x0F)<br>Bit[7]: Offset direction<br>0: Add GrOS[6:0]<br>1: Subtract GrOS[6:0]<br>Bit[6:0]: Gr channel offset adjustment value                                                                                             |
| 23               | ROS              | 80               | RW  | R Channel Offset Adjustment - auto controlled by internal circuit if         COM6[0] = 1 (0x0F)         Bit[7]:       Offset direction         0:       Add ROS[6:0]         1:       Subtract ROS[6:0]         Bit[6:0]:       R channel offset adjustment value                                                |
| 24               | WPT              | 78               | RW  | Luminance Signal High Range for AEC/AGC Operation<br><b>Note:</b> AEC/AGC values will decrease in auto mode when the<br>average luminance becomes greater than WPT[7:0].                                                                                                                                         |
| 25               | BPT              | 68               | RW  | Luminance Signal Low Range for AEC/AGC Operation<br><b>Note:</b> AEC/AGC values will increase in auto mode when the<br>average luminance becomes less than BPT[7:0].                                                                                                                                             |
| 26               | VPT              | D4               | RW  | Fast Mode Large Step Range Thresholds - effective only in<br>AEC/AGC fast mode (when register COM8[7] =1).<br>Bit[7:4]: Upper threshold<br>Bit[3:0]: Lower threshold<br><b>Note:</b> AEC/AGC values may change in larger steps when<br>luminance average becomes greater than VPT[7:4] or less than<br>VPT[3:0]. |

| Table 9 | Device Co | ontrol Register | List |
|---------|-----------|-----------------|------|
|---------|-----------|-----------------|------|

| Address<br>(Hex) | Register<br>Name | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                                                                               |
|------------------|------------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27               | BBIAS            | 80               | RW  | B Channel Offset Manual Adjustment Value - effective only when<br>COM6[3] = 1 (0x0F)<br>Bit[7]: Offset direction<br>0: Add BBIAS[6:0]<br>1: Subtract BBIAS[6:0]<br>Bit[6:0]: B channel offset adjustment value                                                                                                            |
| 28               | GbBIAS           | 80               | RW  | Gb Channel Offset Manual Adjustment Value - effective only when         COM6[3] = 1 (0x0F)         Bit[7]:       Offset direction         0:       Add GbBIAS[6:0]         1:       Subtract GbBIAS[6:0]         Bit[6:0]:       Gb channel offset adjustment value                                                       |
| 29               | GrBIAS           | 80               | RW  | Gr Channel Offset Manual Adjustment Value - effective only when<br>COM6[3] = 1 (0x0F)<br>Bit[7]: Offset direction<br>0: Add GrBIAS[6:0]<br>1: Subtract GrBIAS[6:0]<br>Bit[6:0]: Gr channel offset adjustment value                                                                                                        |
| 2A               | EXHC-H           | 00               | RW  | Bit[7:4]:EXHC[11:8] - Line interval adjustment, MSB 4 bits<br>(LSBs in register EXHC-L[7:0] (0x2B).Bit[3:2]:HSYNCEN[9:8] - HSYNC timing end point most<br>significant 2 bits (LSBs in register HSYNCEN (0x31)Bit[1:0]:HSYNCST[9:8] - HSYNC timing start point most<br>significant 2 bits (LSBs in register HSYNCST (0x30) |
| 2В               | EXHC-L           | 00               | RW  | Line Interval Adjustment Value LSB 8 bits<br>Bit[7:0]: EXHC[7:0], LSB 8 bits<br>(MSBs in register EXHC-H[7:4] (0x2A))<br>The frame rate will be adjusted by changing the line interval. Each<br>LSB will add 1/1520 T <sub>frame</sub> in SXGA and 1/800 T <sub>frame</sub> in VGA mode<br>to the frame period.           |
| 2C               | RBIAS            | 80               | RW  | R Channel Offset Manual Adjustment Value - effective only when<br>COM6[3] = 1 (0x0F)<br>Bit[7]: Offset direction<br>0: Add RBIAS[6:0]<br>1: Subtract RBIAS[6:0]<br>Bit[6:0]: R channel offset adjustment value                                                                                                            |
| 2D               | ADDVSL           | 00               | RW  | VSYNC Pulse Width LSB 8 bits<br>Bit[7:0]: Line periods added to VSYNC width. Default VSYNC<br>output width is 4 x t <sub>line</sub> . Each LSB count will add 1 x<br>t <sub>line</sub> to the VSYNC active period.                                                                                                        |
| 2E               | ADDVSH           | 00               | RW  | VSYNC Pulse width MSB 8 bits<br>Bit[7:0]: Line periods added to VSYNC width. Default VSYNC<br>output width is 4 x t <sub>line</sub> . Each MSB count will add<br>256 x t <sub>line</sub> to the VSYNC active period.                                                                                                      |

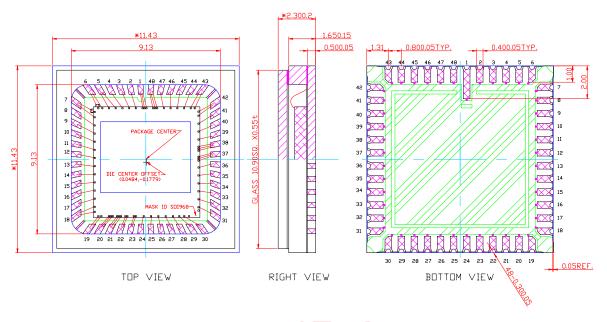

| Address<br>(Hex) | Register<br>Name                                                                                                        | Default<br>(Hex) | R/W | Description                                                                                                                                                                                                                                                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2F               | YAVG                                                                                                                    | 00               | RW  | Luminance Average<br>Average luminance is calculated from the B/Gb/Gr/R channel<br>averages as follows:<br>B/Gb/Gr/R channel average =<br>(BAVG[7:0] + GbAVG[7:0] + GrAVG[7:0] +RAVG[7:0])/4                                                                          |
| 30               | HSYNCST                                                                                                                 | 08               | RW  | HSYNC Position and Width Start Point LSB 8 bits<br>(MSBs in register EXHC-H[1:0] (0x2A))<br>This register and EXHC-H[1:0] define HSYNC start position, each<br>LSB will shift HSYNC start by 2 pixel period.                                                          |
| 31               | HSYNCEN                                                                                                                 | 30               | RW  | HSYNC Position and Width End Point LSB 8 bits<br>(MSBs in register EXHC-H[3:2] (0x2A))<br>This register and EXHC-H[3:2] define HSYNC end position, each<br>LSB will shift HSYNC end by 2 pixel period.                                                                |
| 32               | COM12                                                                                                                   | 24               | RW  | Common Control 12<br>Bit[7:6]: Reserved<br>Bit[5:3]: HREFED[2:0] - Horizontal window end position LSB 3<br>bits (MSBs in register HREFED[7:0] (0x18))<br>Bit[2:0]: HREFST[2:0] - Horizontal window start position LSB<br>3 bits (MSBs in register HREFST[7:0] (0x17)) |
| 33-37            | RSVD                                                                                                                    | XX               |     | Reserved                                                                                                                                                                                                                                                              |
| 38               | ACOM                                                                                                                    | 12               | RW  | Bit[7]: G2X Analog gain control<br>0: Normal<br>1: Increase gain by 2x<br>Bit[6]: Analog black level calibratin control<br>0: Analog BLC ON<br>1: Analog BLC OFF<br>Bit[5:0]: Reserved                                                                                |
| 39-3B            | RSVD                                                                                                                    | XX               | -   | Reserved                                                                                                                                                                                                                                                              |
| 3C               | REG3C                                                                                                                   | 00               | RW  | Register 3C<br>Bit[7:1]: Reserved<br>Bit[0]: AGC[8], LSBs in register AGC[7:0] (0x00)                                                                                                                                                                                 |
| 3D-49            | RSVD                                                                                                                    | XX               | _   | Reserved                                                                                                                                                                                                                                                              |
| NOTE: All        | NOTE: All other registers are factory-reserved. Please contact OmniVision Technologies for reference register settings. |                  |     |                                                                                                                                                                                                                                                                       |

# Table 9Device Control Register List

# **Package Specifications**

The SOI968 uses 48-pin ceramic and organic package. Refer to Figure 16 and Figure 17 for package information and Figure 18 for the array center on the chip.





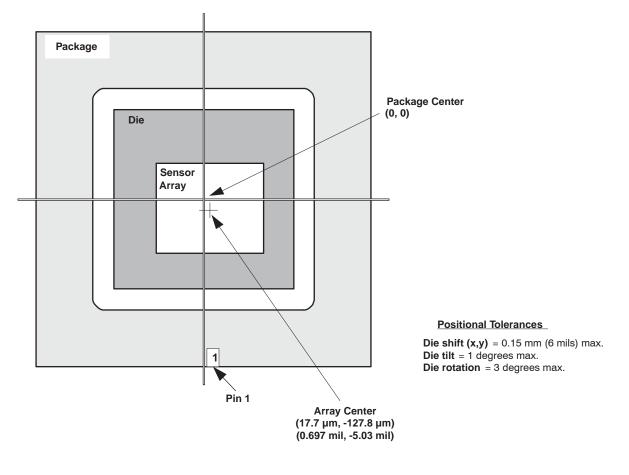

| Table 10 SOI968 Ceramic Package Dimension | Table 10 | SOI968 Ceramic Package Dimensions |  |
|-------------------------------------------|----------|-----------------------------------|--|
|-------------------------------------------|----------|-----------------------------------|--|

| Dimensions                        | Millimeters (mm)                                | Inches (in.)                                  |
|-----------------------------------|-------------------------------------------------|-----------------------------------------------|
| Package Size                      | 14.22 + 0.30 / -0.13 SQ                         | .560 + .012 /005 SQ                           |
| Package Height                    | 2.23 <u>+</u> 0.28                              | .088 <u>+</u> .011                            |
| Substrate Base Height             | 0.51 <u>+</u> 0.05                              | .020 <u>+</u> .002                            |
| Cavity Size                       | 8.89 <u>+</u> 0.13 SQ                           | .350 <u>+</u> .005 SQ                         |
| Castellation Height               | 1.14 <u>+</u> 0.13                              | .045 <u>+</u> .005                            |
| Pin #1 Pad Size                   | 0.51 x 2.16                                     | .020 x .085                                   |
| Pad Size                          | 0.51 x 1.02                                     | .020 x .040                                   |
| Pad Pitch                         | 1.02 <u>+</u> 0.08                              | .040 <u>+</u> .003                            |
| Package Edge to First Lead Center | 1.524 + 0.25 / -0.13                            | .06 + .010 /005                               |
| End-to-End Pad Center-Center      | 11.18 <u>+</u> 0.13                             | .440 <u>+</u> .005                            |
| Glass Size                        | 12.40 <u>+</u> 0.10 SQ / 13.00 <u>+</u> 0.10 SQ | .488 <u>+</u> .004 SQ / .512 <u>+</u> .004 SQ |
| Glass Height                      | 0.55 <u>+</u> 0.05                              | .022 <u>+</u> .002                            |
| Die Thickness                     | 0.733 <u>+</u> 0.015                            | .029 <u>+</u> .001                            |
| Top of Glass to Image Plane       | 0.95 <u>+</u> 0.18                              | .037 <u>+</u> .007                            |
| Substrate Height                  | 1.65 <u>+</u> 0.18                              | .065 <u>+</u> .007                            |

Version 2.0, August 28, 2006








| Table 11 | SOI968 Organic Package Dimensions |
|----------|-----------------------------------|
|----------|-----------------------------------|

| Dimensions                        | Millimeters (mm)    | Inches (in.)       |
|-----------------------------------|---------------------|--------------------|
| Package Size                      | 11.43 <u>+</u> 0.10 | .450 <u>+</u> .004 |
| Package Height                    | 2.30 <u>+</u> 0.20  | .091 <u>+</u> .008 |
| Substrate Base Height             | 0.50 <u>+</u> 0.05  | .020 <u>+</u> .002 |
| Cavity Size                       | 9.13 <u>+</u> 0.10  | .359 <u>+</u> .004 |
| Castellation Height               | 1.15 <u>+</u> 0.15  | .045 <u>+</u> .006 |
| Pin #1 Pad Size                   | 0.40 x 2.00         | .016 x .079        |
| Pad Size                          | 0.40 x 1.00         | .016 x .039        |
| Pad Pitch                         | 0.80 <u>+</u> 0.05  | .031 <u>+</u> .002 |
| Package Edge to First Lead Center | 1.31 <u>+</u> 0.10  | .052 <u>+</u> .004 |
| End-to-End Pad Center-Center      | 8.81 <u>+</u> 0.10  | .347 <u>+</u> .004 |
| Glass Size                        | 10.90 <u>+</u> 0.10 | .429 <u>+</u> .004 |
| Glass Height                      | 0.55 <u>+</u> 0.05  | .022 <u>+</u> .002 |
| Die Thickness                     | 0.73 <u>+</u> 0.015 | .029 <u>+</u> .001 |
| Top of Glass to Image Plane       | 1.02 <u>+</u> 0.15  | .040 <u>+</u> .006 |
| Substrate Height                  | 1.65 <u>+</u> 0.15  | .065 <u>+</u> .006 |

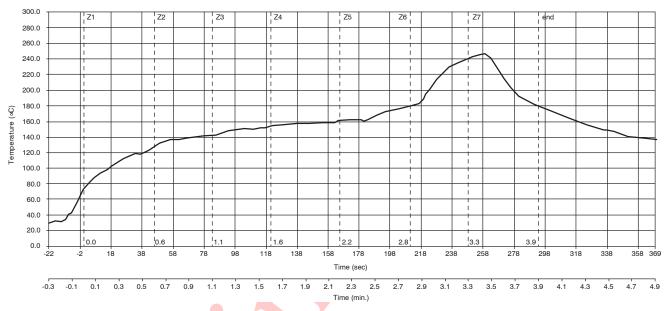
# **Sensor Array Center**

### Figure 18 SOI968 Sensor Array Center



Important: Most optical systems invert and mirror the image so the chip is usually mounted on the board with pin 1 (SVDD) down as shown.

NOTE: Picture is for reference only, not to scale.


### **IR Reflow Ramp Rate Requirements**

### SOI968 Lead-Free Packaged Devices



**Note:** For OVT devices that are lead-free, all part marking letters are lower case

Figure 19 IR Reflow Ramp Rate Requirements



### Table 12 Reflow Conditions

| Condition                            | Exposure                               |
|--------------------------------------|----------------------------------------|
| Average Ramp-up Rate (30°C to 217°C) | Less than 3°C per second               |
| > 100°C                              | Between 330 - 600 seconds              |
| > 150°C                              | At least 210 seconds                   |
| > 217°C                              | At least 30 seconds (30 ~ 120 seconds) |
| Peak Temperature                     | Greater than or equal to 245°C         |
| Cool-down Rate (Peak to 50°C)        | Less than 6°C per second               |
| Time from 30°C to 255°C              | No greater than 390 seconds            |

### **Environmental Specifications**

### Table 13 SOI968 Reliability Test Results

| Parameter                             | Test Condition                                          |
|---------------------------------------|---------------------------------------------------------|
| Temperature/Humidity                  | 85°C/85% Relative Humidity, 1000 hrs. <sup>a</sup>      |
| Temperature Cycling (Air-to-Air)      | -25°C / +125°C, 72 cycles/day, 1000 cycles <sup>a</sup> |
| Highly Accelerated Stress Test (HAST) | 110°C / 85% Relative Humidity, 168 hrs. <sup>a</sup>    |
| High Temperature Storage (HTS)        | 150°C, 1000 hrs. <sup>a</sup>                           |
| High Temperature Static Bias (HTSB)   | 125°C, 1000 hrs. <sup>a</sup>                           |

a. Pre-Condition (Moisture Level II):  $125^{\circ}$ C,  $24h \rightarrow 85^{\circ}$ C/60% RH/168h  $\rightarrow$  IR Reflow  $235^{\circ}$ C, 10 sec, 3 cycles