feATURES

－Up or Downconverting Applications
－Noise Figure：9．3dB Typical at 900MHz Output
－Conversion Gain：2．4dB Typical
－IIP3：9dBm Typical at Icc $=10 \mathrm{~mA}$
－Adjustable Supply Current： 4 mA to 13.4 mA
－Low LO Drive Level：－2dBm
－Single－Ended or Differential LO
－High Port－to－Port Isolation
－Enable Control with Low Off－State Leakage Current
－Single 2.7 V to 5 V Supply
－Small $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Package

APPLICATIONS

－Portable Wireless
－CATV／DBS Receivers
－WiMAX Radios
－PHS Basestations
－RF Instrumentation
－Microwave Data Links
－VHF／UHF 2－Way Radios

DESCRIPTION

The LT®5560 is a low power，high performance broad－ band active mixer．This double－balanced mixer can be driven by a single－ended LO source and requires only -2 dBm of LO power．The balanced design results in low LO leakage to the output，while the integrated input amplifier provides excellent LO to IN isolation．The sig－ nal ports can be impedance matched to a broad range of frequencies，which allows the LT5560 to be used as an up－or down－conversion mixer in a wide variety of applications．
The LT5560 is characterized with a supply current of 10 mA ； however，the DC current is adjustable，which allows the performance to be optimized for each application with a single resistor．For example，when biased at its maximum supply current（ 13.4 mA ），the typical upconverting mixer IIP3 is +10.8 dBm for a 900 MHz output．
$\overline{\mathbf{L Y}}$, LT，LTC and LTM are registered trademarks of Linear Technology Corporation． All other trademarks are the property of their respective owners．

TYPICAL APPLICATION

Low Cost 900MHz Downconverting Mixer

5560 TA02
ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage 5.5V
Enable Voltage -0.3 V to $\mathrm{V}_{C C}+0.3 \mathrm{~V}$
LO Input Power (Differential) $+10 \mathrm{dBm}$
Input Signal Power (Differential) $+10 \mathrm{dBm}$
$\mathrm{IN}^{+}, \mathrm{IN}^{-}$DC Currents 10 mA
OUT ${ }^{+}$, OUT- DC Current 10 mA
TJMAX $125^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=3 V, E N=3 V, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuit shown in Figure 1. (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Requirements ($\mathrm{V}_{\text {cc }}$)					
Supply Voltage		2.7	3	5.3	V
Supply Current	$V_{C C}=3 \mathrm{~V}, \mathrm{R} 1=3 \Omega$		10	12	mA
Shutdown Current	$\mathrm{EN}=0.3 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=3 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Enable (EN) Low = Off, High = On					
EN Input High Voltage (On)		2			V
EN Input Low Voltage (0ff)				0.3	V
Enable Pin Input Current	$\begin{aligned} & \mathrm{EN}=3 \mathrm{~V} \\ & \mathrm{EN}=0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 25 \\ & 0.1 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
Turn On Time			2		$\mu \mathrm{S}$
Turn Off Time			5		$\mu \mathrm{S}$

AC ELECTRICAL CHARACTGRISTICS
 (Notes 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP
Signal Input Frequency Range (Note 4)	Requires External Matching	UNITS	
LO Input Frequency Range (Note 4)	Requires External Matching	<4000	MHz
Signal Output Frequency Range (Note 4)	Requires External Matching	<4000	MHz
		MHz	

AC ELECTRICAL CHARACTERISTICS

$V_{C C}=3 V, E N=3 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta f=1 \mathrm{MHz}$), $\mathrm{P}_{\mathrm{Lo}}=-2 \mathrm{dBm}$, unless otherwise noted. Test circuits are shown in Figures 1, 2 and 3 . (Notes 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX
UNITS				
Signal Input Return Loss	$\mathrm{Z}=50 \Omega$, External Match	15	dB	
LO Input Return Loss	$\mathrm{Z}=50 \Omega$, External Match	15	dB	
Signal Output Return Loss	$\mathrm{Z}=50 \Omega$, External Match	15	dB	
LO Input Power		-6 to 1	dBm	

Upconverting Mixer Configuration: $V_{C C}=3 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta f=1 \mathrm{MHz}), \mathrm{P}_{\mathrm{L} 0}=$ -2 dBm , unless otherwise noted. High side LO for 450 MHz tests, low side LO for 900 MHz and 1900 MHz tests. Test circuits are shown in Figures 1 and 3. (Notes 2, 3 and 5)

PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
Conversion Gain	$\begin{aligned} & \mathrm{f}_{\text {IN }}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.4 \\ & 1.2 \end{aligned}$		dB dB dB
Conversion Gain vs Temperature	$\mathrm{T}_{\text {A }}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz}$	-0.015		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input 3rd Order Intercept	$\begin{aligned} & \mathrm{f}_{\text {IN }}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 9.6 \\ & 9.0 \\ & 8.0 \end{aligned}$		dBm dBm dBm
Input 2nd Order Intercept	$\begin{aligned} & \mathrm{f}_{\text {IN }}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 46 \\ & 47 \\ & 30 \end{aligned}$		dBm dBm dBm
Single Sideband Noise Figure	$\begin{aligned} & \mathrm{f}_{\text {IN }}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {Out }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline 8.8 \\ 9.3 \\ 10.3 \end{gathered}$		dB dB dB
IN to LO Isolation (with LO Applied)	$\begin{aligned} & \mathrm{f}_{I N}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{0 u t}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 69 \\ & 64 \\ & 64 \end{aligned}$		dB dB dB
LO to IN Leakage	$\begin{aligned} & \mathrm{f}_{\text {IN }}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & -63 \\ & -54 \\ & -36 \end{aligned}$		dBm dBm dBm
LO to OUT Leakage	$\begin{aligned} & \mathrm{f}_{\text {IN }}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-44 \\ & -41 \\ & -36 \end{aligned}$		dBm dBm dBm
Input 1dB Compression Point	$\begin{aligned} & \mathrm{f}_{\text {IN }}=70 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=450 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=900 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=140 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline 0.4 \\ -2.8 \\ -0.8 \end{gathered}$		dBm dBm dBm

Downconverting Mixer Configuration: $V_{C C}=3 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $P_{L 0}=-2 d B m$, unless otherwise noted. High side LO for 450 MHz tests, low side LO for 900 MHz and 1900 MHz tests. Test circuits are shown in Figures 2 and 3. (Notes 2, 3 and 5)

AC ELECTRICAL CHARACTERISTICS
Downconverting Mixer Configuration: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, $\mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $P_{I N}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta f=1 \mathrm{MHz}), \mathrm{P}_{\mathrm{L} O}=-2 \mathrm{dBm}$, unless otherwise noted. High side LO for 450 MHz tests, low side LO for 900MHz and 1900MHz tests. Test circuits are shown in Figures 2 and 3. (Notes 2, 3 and 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IN to LO Isolation (with LO Applied)	$\begin{aligned} & \mathrm{f}_{\text {IN }}=450 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=70 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 52 \\ & 52 \\ & 25 \end{aligned}$		dB dB dB
LO to IN Leakage	$\begin{aligned} & \hline \mathrm{f}_{\text {IN }}=450 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=70 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=900 \mathrm{MHz}, \mathrm{f}_{\text {Out }}=140 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=1900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \hline-52 \\ & -57 \\ & -37 \end{aligned}$		dBm dBm dBm
LO to OUT Leakage	$\begin{aligned} & \mathrm{f}_{\text {IN }}=450 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=70 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=1900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -47 \\ & -63 \\ & -24 \end{aligned}$		
2RF - 2LO Output Spurious (Half IF) Product ($\mathrm{f}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\text {OUT }} / 2$)	$\begin{aligned} & \text { 450MHz: } f_{I N}=485 \mathrm{MHz}, f_{\text {out }}=70 \mathrm{MHz} \\ & \text { 900MHZ: } f_{I N}=830 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \\ & \text { 1900MHz: } f_{\text {IN }}=1830 \mathrm{MHz}, f_{\text {OUt }}=140 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \hline-68 \\ & -69 \\ & -47 \end{aligned}$		dBC dBc dBc
3RF - 3LO Output Spurious (1/3 IF) Product ($\mathrm{f}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\text {OUT }} / 3$)	450MHz: $\mathrm{f}_{\text {IN }}=496.7 \mathrm{MHz}, \mathrm{f}_{\text {Out }}=69.9 \mathrm{MHz}$ $900 \mathrm{MHz}: f_{\mathrm{fN}}=806.7 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140.1 \mathrm{MHz}$ $1900 \mathrm{MHz}: \mathrm{f}_{\mathrm{IN}}=1806.7 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140.1 \mathrm{MHz}$		$\begin{aligned} & \hline-79 \\ & -76 \\ & -62 \end{aligned}$		dBC dBc dBc
Input 1dB Compression Point	$\begin{aligned} & \mathrm{f}_{\text {IN }}=450 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=70 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \\ & \mathrm{f}_{\text {IN }}=1900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz} \end{aligned}$		$\begin{gathered} -0.8 \\ 0 \\ -2.2 \end{gathered}$		dBm dBm dBm

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Each set of frequency conditions requires an appropriate test board.
Note 3: Specifications over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range are assured by design, characterization and correlation with statistical process controls.

Note 4: Operation over a wider frequency range is possible with reduced performance. Consult the factory for information and assistance.
Note 5: SSB Noise Figure measurements are performed with a smallsignal noise source and bandpass filter on the RF input (downmixer) or output (upmixer), and no other RF input signal applied.

TYPICAL DC PGRFORMANCE CHARACTERISTICS

TYPICAL AC PGRFORMANCE CHARACTERISTICS goomhz Upoonverting Mixer Application:
$V_{c c}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}, E N=3 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{I N}=140 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}\left(-20 \mathrm{dBm} /\right.$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $\mathrm{f}_{\mathrm{LO}}=760 \mathrm{MHz}$, $P_{\text {LO }}=-2 \mathrm{dBm}$, output measured at 900 MHz , unless otherwise noted. (Test circuit shown in Figure 1)

TYPICAL AC PGRFORMANCE CHARACTERISTICS 450MHz Upoonverting Mixer Applicaion: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}\left(-20 \mathrm{dBm} /\right.$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $\mathrm{f}_{\mathrm{LO}}=520 \mathrm{MHz}$, $\mathrm{P}_{\mathrm{LO}}=-2 \mathrm{dBm}$, output measured at 450MHz, unless otherwise noted. (Test circuit shown in Figure 3)

1900 MHz Upconverting Mixer Application: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{IN}}=140 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $\mathrm{f}_{\mathrm{L} 0}=1760 \mathrm{MHz}, \mathrm{P}_{\mathrm{Lo}}=-2 \mathrm{dBm}$, output measured at 1900 MHz , unless otherwise noted. (Test circuit shown in Figure 1)

TYPICAL AC PGRFORMANCE CHARACTERISTICS
1900MHz Upconverting Mixer Application:
$V_{C C}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}, E N=3 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{IN}}=140 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}), \mathrm{f}_{\mathrm{LO}}=1760 \mathrm{MHz}$, $P_{\mathrm{LO}}=-2 \mathrm{dBm}$, output measured at 1900 MHz , unless otherwise noted. (Test circuit shown in Figure 1)

900 MHz Downconverting Mixer Application: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{IN}}=900 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $\mathrm{f}_{\mathrm{L} 0}=760 \mathrm{MHz}, \mathrm{P}_{\mathrm{L} 0}=-2 \mathrm{dBm}$, output measured at 140 MHz , unless otherwise noted. (Test circuit shown in Figure 2)

LT5560

TYPICAL AC PERFORMANCE CHARACTERISTICS $900 M H z$ Downconverting Mixer Application:

$V_{C C}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}, E \mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{IN}}=900 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}), \mathrm{f}_{\mathrm{L} 0}=760 \mathrm{MHz}$, $P_{\mathrm{LO}}=-2 \mathrm{dBm}$, output measured at 140 MHz , unless otherwise noted. (Test circuit shown in Figure 2)

450 MHz Downconverting Mixer Application: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{IN}}=450 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2-tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz}$), $\mathrm{f}_{\mathrm{L} 0}=520 \mathrm{MHz}, \mathrm{P}_{\mathrm{L} 0}=-2 \mathrm{dBm}$, output measured at 70 MHz , unless otherwise noted. (Test circuit shown in Figure 3)

TYPICAL AC PERFORMANCE CHARACTERISTICS 1900 MHz Downconverting Mixer Application:

$V_{C C}=3 V, I_{C C}=10 \mathrm{~mA}, E N=3 V, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{I \mathrm{~N}}=1900 \mathrm{MHz}, \mathrm{P}_{I \mathrm{~N}}=-20 \mathrm{dBm}(-20 \mathrm{dBm} /$ tone for 2 -tone IIP3 tests, $\Delta \mathrm{f}=1 \mathrm{MHz})$,
$f_{L O}=1760 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-2 \mathrm{dBm}$, output measured at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2)

$\mathrm{IF}_{\text {out }}, \mathbf{2 \times 2}$ and $\mathbf{3 \times 3}$ Spurs vs RF Input Power (Single Input Tone)

Conversion Gain and IIP3 vs LO Input Power

LO-IN and LO-OUT Leakage vs LO Frequency

PIn functions

LO^{-}, LO^{+}(Pins 1, 8): Differential Inputs for the Local Oscillator Signal. The LO input impedance is approximately 180Ω, thus external impedance matching is required. The LO pins are internally biased to approximately 1 V below $\mathrm{V}_{\text {CC }}$; therefore, DC blocking capacitors are required. The LT5560 is characterized and production tested with a single-ended LO drive, though a differential LO drive can be used.
EN (Pin 2): Enable Pin. An applied voltage above 2 V will activate the IC. For $\mathrm{V}_{\text {EN }}$ below 0.3 V , the IC will be shut down. If the enable function is not required, then this pin should be connected to $V_{C C}$. The typical enable pin input current is $25 \mu \mathrm{~A}$ for $\mathrm{EN}=3 \mathrm{~V}$. The enable pin should not be allowed to float because the mixer may not turn on reliably. Note that at no time should the EN pin voltage be allowed to exceed $\mathrm{V}_{C C}$ by more than 0.3 V .
$\mathbf{I N}^{+}, \mathbf{I N}^{-}$(Pins3, 4): Differential Inputs. These pins should be driven with a differential signal for optimum performance.

Each pin requires a DC current path to ground. Resistance to ground will cause a decrease in the mixer current. With 0Ω resistance, approximately 6 mA of DC current flows out of each pin. For lowest LO leakage to the output, the DC resistance from each pin to ground should be equal. An impedance transformation is required to match the differential input to the desired source impedance.
OUT ${ }^{-}$, OUT $^{+}$(Pins 5, 6): Differential Outputs. An impedance transformation may be required to match the outputs. These pins require a DC current path to $\mathrm{V}_{C C}$.
$V_{\text {CC }}$ (Pin 7): Power Supply Pin for the Bias Circuits. Typical current consumption is 1.5 mA . This pin should be externally bypassed with a 1 nF chip capacitor.
Exposed Pad (Pin 9): PGND. Circuit Ground Return for the Entire IC. This must be soldered to the printed circuit board ground plane.

BLOCK DIAGRAM

LT5560

TEST CIRCUITS

Component Values for $\mathrm{f}_{\text {OUT }}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=140 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{LO}}=760 \mathrm{MHz}$

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C1	22 pF	0402	AVX 04025A220JAT	L1, L2	18 nH	1005	Toko LL1005-FH18NJ
C3, C5	100 pF	0402	AVX 04025A101JAT	L3, L4	27 nH	1005	Toko LL1005-FH27NJ
C4	1 pF	0402	AVX 04025A1R0BAT	L5	12 nH	1005	Toko LL1005-FH12NJ
C6, C9	1 nF	0402	AVX 04023C102JAT	R1	3Ω	0402	
C8	$1 \mu \mathrm{~F}$	0603	Taiyo Yuden LMK107BJ105MA	T1	$1: 1$		Coilcraft WBC1-1TL
C10	2.2 pF	0402	AVX 04025A2R2BAT	T2	$4: 1$		TDK HHM1515B2

Note: C7 not used.

Component Values for $\mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=140 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{LO}}=1760 \mathrm{MHz}$

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C1	$22 p F$	0402	AVX 04025A220JAT	L1, L2	18 nH	1005	Toko LL1005-FH18NJ
C3	100 pF	0402	AVX 04025A101JAT	L3, L4	3.9 nH	1005	Toko LL1005-FH3N9S
C7	1.5 pF	0402	AVX 04025A1R5BAT	L5	5.6 nH	1005	Toko LL1005-FH5N6S
C6, C9	1 nF	0402	AVX 04023C102JAT	R1	3Ω	0402	
C8	$1 \mu \mathrm{~F}$	0603	Taiyo Yuden LMK107BJ105MA	T1	$1: 1$		Coilcraft WBC1-1TL
C10	1 pF	0402	AVX 04025A1R0BAT	T2	$1: 1$		TDK HHM1525

Note: C4 and C5 are not used.

Figure 1. Test Schematic for 900 MHz and 1900MHz Upconverting Mixer Applications with 140MHz Input

TEST CIRCUITS

Component Values for $\mathrm{f}_{\mathrm{IN}}=900 \mathrm{MHz}, \mathrm{f}_{\text {OUT }}=140 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{LO}}=760 \mathrm{MHz}$

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C1	$2.2 p F$	0402	AVX 04025A2R2BAT	L1, L2	0Ω	1005	0Ω Resistor
C2	1.2 pF	0402	AVX 04025A1R2BAT	L3, L4	220 nH	1608	Toko LL1608-FSR22J
C3, C5	100 pF	0402	AVX 04025A101JAT	L5	12 nH	0402	Toko LL1005-FH12NJ
C4	1 pF	0402	AVX 04025A1R0BAT	R1	3Ω	0402	
C6	1 nF	0402	AVX 04023C102JAT	T1	$1: 1$		TDK HHM1522B1
C8	$1 \mu F$	0603	Taiyo Yuden LMK107BJ105MA	T2	$4: 1$		M/A-COM MABAES0061

Note: C7 not used.

Component Values for $\mathrm{f}_{\mathrm{IN}}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{OUT}}=140 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{L} 0}=1760 \mathrm{MHz}$

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C1	1.0 pF	0402	AVX 04025A1R0BAT	L1, L2	0Ω	1005	0Ω Resistor
C2	1.2 pF	0402	AVX 04025A1R2BAT	L3, L4	220 nH	1608	Toko LL1608-FSR22J
C3	100 pF	0402	AVX 04025A101JAT	L5	5.6 nH	1005	Toko LL1005-FH5N6S
C7	1.5 pF	0402	AVX 04025A1R5BAT	R1	3Ω	0402	
C6	1 nF	0402	AVX 04023C102JAT	T1	$2: 1$		TDK HHM1526
C8	$1 \mu F$	0603	Taiyo Yuden LMK107BJ105MA	T2	$4: 1$		M/A-COM MABAES0061

Note: C4 and C5 are not used.

Figure 2. Test Schematic for 900MHz and 1900MHz Downconverting Mixer Applications with 140 MHz Input

LT5560

TEST CIRCUITS

Upconverting Mixer Component Values for $\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}, \mathrm{f}_{0 U T}=450 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{LO}}=520 \mathrm{MHz}$

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C1	$39 p F$	0402	AVX 04025390JAT	L1, L2	$33 n H$	1005	Toko LL1005-FH33NJ
C3, C5, C6	1 nF	0402	AVX 04023C102JAT	L3, L4	68 nH	1608	Toko LL1608-FS68NJ
C4	1.5 pF	0402	AVX 04025A1R5BAT	L5	22 nH	1005	Toko LL1005-FH22NJ
C8	$1 \mu \mathrm{~F}$	0603	Taiyo Yuden LMK107BJ105MA	R1	3Ω	0402	
C10	1.5 pF	0402	AVX 04025A1R5BAT	T1	$1: 1$		Coilcraft WBC1-1TL
				T2	$4: 1$		M/A-COM MABAES0061

Note: C11 is not used.

Downconverting Mixer Component Values for $\mathrm{f}_{\mathrm{IN}}=450 \mathrm{MHz}, \mathrm{f}_{0 \mathrm{~T}}=70 \mathrm{MHz}$ and $\mathrm{f}_{\mathrm{LO}}=520 \mathrm{MHz}$

REF DES	VALUE	SIZE	PART NUMBER	REF DES	VALUE	SIZE	PART NUMBER
C3, C5, C6	1 nF	0402	AVX 04023C102JAT	L3, L4	0Ω	0402	0Ω Resistor
C4	1.5 pF	0402	AVX 04025A1R5BAT	L5	22 nH	0402	Toko LL1005-FH22NJ
C8	$1 \mu \mathrm{~F}$	0603	Taiyo Yuden LMK107BJ105MA	R1	3Ω	0402	
C11	5.6 pF	0603	AVX 06035A5R6BAT	T1	$1: 1$		Coilcraft WBC1-1TL
L1, L2	0Ω	0402	0Ω Resistor				
			T2	$16: 1$		Coilcraft WBC16-1TL	

Note: C1 and C10 not used.

APPLICATIONS INFORMATION

The LT5560 consists of a double-balanced mixer, a com-mon-base input buffer amplifier, and bias/enable circuits. The IC has been designed for frequency conversion applications up to 4GHz, though operation over a wider frequency range may be possible with reduced performance. For best performance, the input and output should be connected differentially. The LO input can be driven by a single-ended source with either low side or high side LO operation. The LT5560 is characterized and production tested using a single-ended LO drive.

The quiescent DC current of the LT5560 can be adjusted from less than 4 mA to approximately 13.5 mA through the use of an external resistor. This functionality gives the user the ability to make application dependent trade-offs between IIP3 performance and DC current.
Three demo boards, as described in Table 1, are available depending on the desired application. The listed input and output frequency ranges are based on measured 12 dB return loss bandwidths and the LO port frequency ranges are based on 10 dB return loss bandwidths. The general circuit topologies are shown in Figures 1, 2 and 3 for DC963B, DC991A and DC1027A, respectively. The board layouts are shown in Figures 23, 24 and 25. The low frequency board, DC1027A, can be reconfigured for upconverting applications.

Table 1. LT5560 Demo Board Descriptions

MIXER DESCRIPTION	DEMO BOARD NUMBER	INPUT FREQ. (MHz)	OUTPUT FREQ. (MHz)	LO FREQ. (MHz)
Upconverting, Cellular Band	DC963B	$50-190$	$850-940$	$530-930$
Downconverting Cellular Band	DC991A	$710-1300$	$110-170$	$530-930$
Downconverting, VHF Band	DC1027A	$115-295$	$3-60$	$180-310$

Note: Consult factory for demo boards for UMTS, WLAN and other bands.

Signal Input Port

Figure 4 shows a simplified schematic of the differential input signal port and an example topology for the external impedance matching circuit. Pins 3 and 4 each source up to 6 mA of DC current. This current can be reduced by the addition of resistor R1 (adjustable mixer current is discussed in a later section). The DC ground path can be
provided through the center-tap of an input transformer, as shown, or through matching inductors or chokes connected from pins 3 and 4 to ground.

Figure 4. Input Port with Lowpass
External Matching Topology
The lowpass impedance matching topology shown may be used to transform the differential input impedance at pins 3 and 4 to match that of the signal source. The differential input impedances for several frequencies are listed in Table 2.

Table 2. Input Signal Port Differential Impedance

FREQUENCY (MHz)	INPUT IMPEDANCE (Ω)	REFLECTION COEFFICIENT $\left(\mathbf{Z}_{\mathbf{0}}=50 \Omega\right)$	
70	$28.5+\mathrm{j} 0.8$	0.274	MAG
140	$28.5+\mathrm{j} 1.6$	0.274	ANGLE (DEG.)
240	$28.6+\mathrm{j} 2.7$	0.275	174
360	$28.6+\mathrm{j} 4.0$	0.276	171
450	$28.6+\mathrm{j} 4.9$	0.278	167
750	$28.8+\mathrm{j} 8.2$	0.287	163
900	$28.8+\mathrm{j} 9.8$	0.294	153
1500	$29.1+\mathrm{j} 16.3$	0.328	148
1900	$29.4+\mathrm{j} 20.8$	0.357	138
2150	$29.6+\mathrm{j} 23.6$	0.376	120
2450	$29.9+\mathrm{j} 27.0$	0.399	114
3600	$31.7+\mathrm{j} 42.1$	0.499	107

LT5560

APPLICATIONS INFORMATION

The following example demonstrates the design of a lowpass impedance transformation network for a signal input at 900 MHz .

The simplified input circuit is shown in Figure 5. For this example, the input transformer has a $1: 1$ impedance ratio, so $R_{S}=50 \Omega$. From Table 2, at 900 MHz , the differential input impedance is: $R_{L}+j X_{I N T}=28.8+j 9.8 \Omega$. The internal reactance will be used as part of the impedance matching network. The matching circuit consists of additional external series inductance (L1 and L2) and a capacitance (C1) in parallel with the 50Ω source impedance. The external capacitance and inductance are calculated below.
First, calculate the impedance transformation ratio (n) and the network Q :

$$
\begin{aligned}
& n=\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{L}}}=\frac{50}{28.8}=1.74 \\
& \mathrm{Q}=\sqrt{(n-1)}=0.858
\end{aligned}
$$

Next, the capacitance and inductance can be calculated as follows:

$$
\begin{aligned}
& X_{C}=\frac{R_{S}}{Q}=58.3 \Omega \\
& C 1=\frac{1}{\omega \cdot X_{C}}=3.03 p F \\
& X_{L}=R_{L} \cdot Q=24.7 \Omega \\
& X_{E X T}=X_{L}-X_{I N T}=14.9 \Omega \\
& L 1=L 2=\frac{L_{E X T}}{2}=\frac{X_{E X T}}{2 \omega}=1.32 \mathrm{nH}
\end{aligned}
$$

The internal inductance has been accounted for by subtracting the internal reactance ($\mathrm{X}_{\mathrm{INT}}$) from the total reactance $\left(\mathrm{X}_{\mathrm{L}}\right)$. Small inductance values may be realized using highimpedance printed transmission lines instead of lumped inductors. The equations above provide good starting values, though the values may need to be optimized to account for layout and component parasitics.

Figure 5. Small Signal Circuit for the Input Port

Table 3 lists actual component values used on the LT5560 evaluation boards for impedance matching at various frequencies. The measured Input Return Loss vs Frequency performance is plotted for several of the cases in Figure 6.

Table 3. Component Values for Input Matching

CASE	FREQ. (MHz)	T1	$\mathbf{C 1}$ $\mathbf{(p F)}$	L1, L2 (nH)	MATCH BW (@12dB RL)
1	10	WBC1-1TL 1:1	220	180	$6-18$
2	70	WBC1-1TL 1:1	39	33	$29-102$
3	140	WBC1-1TL 1:1	22	18	$50-190$
4	240	WBC1-1TL 1:1	15	12	$115-295$
5	450^{1}	WBC1-1TL 1:1	NA	0	$390-560$
6	900	HHM1522B1 1:1	2.2	0	$710-1630$
7	1900	HHM1526 2:1	1	0	$1660-2500$
8	2450	HHM152OA2 2:1	1	0	$1640-2580$
9	3600	HHM1583B1 2:1	0.5	0	$3330-3840$

Note 1: Series 5.6 pF capacitor is used at the input (see Figure 3).

5560 F06
Figure 6. Input Return Loss vs Frequency for Different Matching Values

LO Input Port

Figure 7 shows a simplified schematic of the LO input. The LO input connections drive the bases of the mixer transistors, while 200Ω resistor across the inputs provides the impedance termination. The internal $1 \mathrm{k} \Omega$ bias resistors are in parallel with the input resistor resulting in a net input DC resistance of approximately 180Ω. The pins are biased by an internally generated voltage at approximately 1V below $\mathrm{V}_{c c}$; thus external DC blocking capacitors are required. If desired, the LO inputs can be driven differentially. The required LO drive at the IC is 240 mV RMS (typ) which can come from $\mathrm{a} 50 \Omega$ source or a higher impedance such as PECL.

Figure 7. LO Input Schematic

LT5560

APPLICATIONS INFORMATION

Reactive matching from the LO source to the LO input is recommended to take advantage of the resulting voltage gain. To assist in matching, Table 4 lists the single-ended input impedances of the LO input port. Actual component values, for several LO frequencies, are listed in Table 5. Figure 8 shows the typical return loss response for each case.

Table 4. Single-Ended LO Input Impedance (Parallel Equivalent)
$\left.\begin{array}{c|c|c|c}\hline \text { FREQUENCY } & \text { INPUT } \\ \text { (MHz) }\end{array} \begin{array}{c}\text { IMPEDANCE } \\ \text { (} \Omega \text {) }\end{array}\right)$

Table 5. Component Values for LO Input Matching

CASE	FREQ. $\mathbf{(M H z)}$	$\mathbf{C 4}$ $\mathbf{(p F)}$	$\mathbf{L 5}$ $(\mathbf{n H})$	$\mathbf{C 7}$ $\mathbf{(p F)})$	C3, C5 $\mathbf{(p F})$	MATCH BW $(@ 12 d B ~ R L)$
1	150	8.2	68	-	1000	$120-180$
2	250	4.7	47	-	1000	$195-300$
3	520	1.5	22	-	1000	$390-605$
4	760	1	12	-	100	$590-890$
5	1200	-	6.8	-	100	$850-1430$
6	1760	-	4.7	1	100^{1}	$1540-1890$
7	2900	-	1	1	10	$2690-3120$
8	3150	-	0	-	10	$2990-3480$

Note 1: C5 is not used at 1760 MHz

5560 F08
Figure 8. Typical LO Input Return Loss vs Frequency for Different Matching Values

APPLICATIONS INFORMATION

Signal Output Port

A simplified schematic of the output circuit is shown in Figure 9. The output pins, OUT^{+}and OUT^{-}, are internally connected to the collectors of the mixer transistors. These pins must be biased at the supply voltage, which can be applied through a transformer center-tap, impedance matching inductors, RF chokes, or pull-up resistors. With external resistor R1 $=3 \Omega$ (Figures 1 to 3), each OUT pin draws about 4.5 mA of supply current. For optimum performance, these differential outputs should be combined externally through a transformer or balun.
An equivalent small-signal model for the output is shown in Figure 10. The output impedance can be modeled as a $1.2 \mathrm{k} \Omega$ resistor in parallel with a 0.7 pF capacitor. For low frequency applications, the 0.7 nH series bond-wire inductances can be ignored.
The external components, C2, L3 and L4, form a lowpass impedance transformation network to match the mixer output impedance to the input impedance of transformer T2. The values for these components can be estimated

Figure 9. Output Port Schematic
using the impedance parameters listed in Table 6 along with similar equations as used for the input matching network. As an example, at an output frequency of 140 MHz and $R_{L}=200 \Omega$ (using a 4:1 transformer for T2),

$$
\begin{aligned}
& n=\frac{R_{S}}{R_{\mathrm{L}}}=\frac{1082}{200}=5.41 \\
& \mathrm{Q}=\sqrt{(n-1)}=2.10 \\
& X_{C}=\frac{R_{S}}{Q}=515 \Omega \\
& C=\frac{1}{\omega \bullet X_{C}}=2.21 \mathrm{pF} \\
& C 2=C-C_{I N T}=1.51 p F \\
& X_{L}=R_{L} \cdot Q=420 \Omega \\
& L 3=L 4=\frac{X_{\mathrm{L}}}{2 \omega}=239 n \mathrm{H}
\end{aligned}
$$

Figure 10. Output Port Small-Signal Model with External Matching

APPLICATIONS INFORMATION

Table 6. Output Port Differential Impedance (Parallel Equivalent)

FREQUENCY (MHz)	OUTPUT IMPEDANCE (Ω)	REFLECTION COEFFICIENT ($\left.\mathbf{Z}_{\mathbf{0}}=50 \Omega\right)$		
	MAG	ANGLE (DEG.)		
70	$1098 \\|-\mathrm{j} 3185$	0.913	-1.8	
140	$1082 \\|-\mathrm{j} 1600$	0.912	-3.6	
240	$1082 \\|-\mathrm{j} 974$	0.912	-5.9	
360	$1093 \\|-\mathrm{j} 646$	0.913	-8.9	
450	$1083 \\|-\mathrm{j} 522$	0.913	-11.0	
750	$1037 \\|-\mathrm{j} 320$	0.910	-17.8	
900	$946 \\|-\mathrm{j} 269$	0.903	-21.1	
1500	$655 \\|-\mathrm{j} 162$	0.870	-34.5	
1900	$592 \\|-\mathrm{j} 122$	0.865	-44.6	
2150	$662 \\|-\mathrm{j} 108$	0.883	-50.0	
2450	$612 \\|-\mathrm{j} 95.7$	0.879	-55.4	
3600	$188 \\|-\mathrm{j} 53.1$	0.756	-88.7	

In cases where the calculated value of C 2 is less than the internal output capacitance, capacitor $\mathrm{C10}$ can be used to improve the impedance match.

Table 7 lists actual component values used on the LT5560 evaluation boards for impedance matching at several frequencies. The measured output return loss vs frequency performance is plotted for several of the cases in Figure 11.

Table 7. Component Values for Output Matching

CASE	FREQ. (MHz)	T2	C2 (pF)	L3, L4 (nH)	C10 (pF)	MATCH BW $(@ 12 d B ~ R L) ~$
1	10	WBC16-1TL 16:1	-	0	-	$3-60$
2	70	WBC16-1TL 16:1	-	0	-1	$3-60$
3	140	MABAES0061 $4: 1$	1.5	220	-	$110-170$
4	240	MABAES0061 $4: 1$	0.5	120	-	$175-300$
5	380	MABAESO061 $4: 1$	-	68	-	$290-490$
6	450	MABAESO061 $4: 1$	-	68	1.5	$360-540$
7	900	HHM1515B2 4:1	-	27	2.2	$850-940$
8	1900	HHM1525 1:1	-	3.9	1	$1820-2000$

Note 1: A better 70MHz match can be realized by adding a shunt 180nH inductor at the C 10 location.

Figure 11. Output Return Loss vs Frequency for Different Matching Values

APPLICATIONS INFORMATION

Enable Interface

Figure 12 shows a simplified schematic of the EN pin interface. The voltage necessary to turn on the LT5560 is 2 V . To disable the chip, the enable voltage must be less than 0.3V. If the EN pin is allowed to float, the chip will tend to remain in its last operating state, thus it is not recommended that the enable function be used in this manner. If the shutdown function is not required, then the EN pin should be connected directly to $\mathrm{V}_{\text {CC }}$.
The voltage at the EN pin should never exceed the power supply voltage (V_{CC}) by more than 0.3 V . If this should occur, the supply current could be sourced through the EN pin ESD diode, potentially damaging the IC.

Figure 12. Enable Input Circuit

Adjustable Supply Current

The LT5560 offers a direct trade-off between power supply current and linearity. This capability allows the user to optimize the performance and power dissipation of the mixer for a particular application. The supply current can be adjusted by changing the value of resistor R1 at the center-tap of the input balun. For downconversion applications, a bypass capacitor in parallel with R1 may be desired to minimize noise figure. The bypass capacitor has a greater effect on noise figure at larger values of R1. In upmixer configurations, adding a capacitor across R1 has little effect.

Figure 13 shows the supply current as a function of R1. Note that the current will also be affected by parasitic resistance in the matching components. Figure 14 illustrates the effect of supply current on Gain, IIP3 and NF of a 900 MHz upconverting mixer. The performance
vs current of a 900 MHz downconverting mixer is plotted in Figure 15. In this example, a 1 nF capacitor has been placed in parallel to R1 for best noise figure.

Figure 13. Typical Supply Current vs R1 Value

Figure 14. 900MHz Upconverting Mixer Gain, Noise Figure and IIP3 vs Supply Current

Figure 15. 900MHz Downconverting Mixer Gain, Noise Figure and IIP3 vs Supply Current

APPLICATIONS INFORMATION

Application Examples

The LT5560 may be used as an upconverting or downconverting mixer in a wide variety of applications, in addition to those identified in the datasheet. The following examples illustrate the versatility of the LT5560. (The component values for each case can be found in Tables 3, 5 and 7).
Figure 16 demonstrates gain, IIP3 and IIP2 performance versus RF Output Frequency for the LT5560 when used as a 240 MHz upconverting mixer. The input frequency is 10 MHz , with an LO frequency of 250 MHz . The circuit uses the topology shown in Figure 1.

Figure 16. LT5560 Performance in 240MHz Upconverting Mixer Application

The performance in a 140MHz downconverting mixer application is plotted in Figure 17. In this case the gain, IIP3 and NF are shown as a function of LO power with an IF output frequency of 10 MHz . The circuit topology for this case is shown in Figure 3.

Figure 17. LT5560 Performance in 140MHz Downconverting Mixer Application

The LT5560 operation at higher frequencies is demonstrated in Figure 18, where the performance of a 3600MHz downconverting mixer is shown. The conversion gain, IIP3 and DSB NF are plotted for an RF input frequency range of 3300 to 3800 MHz and an IF frequency of 450 MHz . The circuit is the same topology as shown in Figure 2.

Figure 18. LT5560 Performance as a 3600MHz Downconverting Mixer

APPLLCATIONS InfORMATION

Lumped Element Matching

The applications described so far have employed external transformers or hybrid baluns to realize single-ended to differential conversions and, in some cases, impedance transformations. An alternate approach is to use lumpedelement baluns to realize the input or output matching networks.

A lumped element balun topology is shown in Figure 19. The desired component values can be estimated using the equations below, where R_{A} and R_{B} are the terminating resistances on the unbalanced and balanced ports, respectively. Variable f_{C} is the desired center frequency. (The resistances of the LT5560 input and output can be found in Tables 2 and 6).

$$
\begin{aligned}
\mathrm{L}_{0} & =\frac{\sqrt{\mathrm{R}_{\mathrm{A}} \cdot \mathrm{R}_{\mathrm{B}}}}{2 \cdot \pi \cdot \mathrm{f}_{\mathrm{C}}} \\
\mathrm{C}_{0} & =\frac{1}{2 \cdot \pi \cdot \mathrm{f}_{\mathrm{C}} \cdot \sqrt{\mathrm{R}_{\mathrm{A}} \cdot \mathrm{R}_{\mathrm{B}}}}
\end{aligned}
$$

The computed values are approximate, as they don't account for the effects of parasitics of the IC and external components.
Inductor $L_{D C}$ is used to provide a DC path to ground or to $V_{C C}$ depending on whether the circuit is used at the input or output of the LT5560. In some cases, it is desirable to make the value of $L_{D C}$ as large as practical to minimize loading on the circuit; however, the value can also be optimized to tune the impedance match. The shunt inductor, L_{0}, provides the DC path for the other balanced port.
Capacitor $C_{D C}$ may be required for DC blocking but can often be omitted if DC decoupling is not required.

Figure 19. Lumped Element Balun
In some applications, $C_{D C}$ is useful for optimizing the impedance match.

The circuit shown on page 1 illustrates the use of lumped element baluns. In this example, the LT5560 is used to convert a 900 MHz input signal down to 140 MHz using a $760 \mathrm{MHz} \mathrm{L}_{0}$ signal.
For the 900 MHz input, $R_{A}=50 \Omega$ and $R_{B}=28 \Omega$ (from Table 2). The actual values used for C_{0} and L_{0} are 4.7 pF and 6.8 nH , which agree very closely with the calculated values of 4.7 pF and 6.6 nH . The 15 nH shunt inductor, in this case, has been used to optimize the impedance match, while the 100pF cap provides DC decoupling.
At the 140 MHz output, the values used for R_{A} and R_{B} are 50Ω and 1080Ω (from Table 6), respectively, which result in calculated values of $\mathrm{C}_{0}=4.9 \mathrm{pF}$ and $\mathrm{L}_{0}=265 \mathrm{nH}$. These values are very close to the actual values of 4.7 pF and 270 nH . A shunt inductor (L_{DC}) of 270 nH is used here and the 33pF blocking cap has been used to optimize the impedance.

LT5560

APPLICATIONS INFORMATION

Measured IFout and IM3 levels vs RF input power for the mixer with lumped element baluns are shown on page 1. Additional performance parameters vs RFinput frequency are plotted in Figure 20.

Figure 20. Performance of 900MHz Downconverting Mixer with Lumped Element Baluns

Low Frequency Applications

At low IFfrequencies, where transformers can be impractical due to their large size and cost, alternate methods can be used to achieve desired differential to single-ended conversions. The examples in Figures 21 and 22 use an
op-amp to demonstrate performance with an output frequency of 450 KHz . Pull-up resistors R3 and R4 are used at the open-collector IF outputs instead of large inductors. The op-amp provides gain and converts the mixer differential outputs to single-ended. At low frequencies, the LO port can be easily matched with a shunt resistor and a DC blocking cap. This IF interface circuit can be used for signals up to 1 MHz .
Figure 21 shows an input match that uses a transformer to present a differential signal to the mixer. A possible alternative, shown in Figure 22, is to use a single-ended drive on one input pin, with the other pin grounded. This approach is more cost effective than the transformer, however, some performance is sacrificed. Another option is to use a lumped-element balun, which requires only one more component than the single-ended impedance match, but could provide better performance. Measured data for the examples below are summarized in Table 8.

Table 8. Low-Frequency Performance

$\mathbf{f}_{\mathbf{I}}$ $(\mathbf{M H z})$	$\mathbf{f}_{\text {OUT }}$ $(\mathbf{M H z})$	$\mathbf{G}_{\mathbf{C}}$ $(\mathbf{d B})$	IIP3 $(\mathbf{d B m})$	DSB NF $(\mathbf{d B})$	$\mathbf{I} \mathbf{c C}$ $(\mathbf{m A})$
200	0.45	9	3.8	11.6	14
90	0.45	6.8	3.3	22	18

Figure 21. A 200MHz to 450KHz Downconverter with Active IF Interface

APPLICATIONS INFORMATION

Figure 22. 90MHz Downconverter with a Low Cost Discrete Balun Input and a 450 kHz Active IF Interface

Figure 23. Upconverting Mixer Evaluation Board (DC963B)—See Table 1

TYPICAL APPLICATIONS

Figure 24. Downconverting Mixer Evaluation Board (DC991A)—See Table 1

Figure 25. HF/VHF/UHF Upconverting or Downconverting Mixer Evaluation Board (DC1027A)—See Table 1

DD8 Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

ON TOP AND BOTTOM OF PACKAGE

reLATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LT5511	High Linearity Upconverting Mixer	RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer
LT5512	1KHz to 3GHz High Signal Level Downconverting Mixer	20dBm IIP3, Integrated LO Buffer, HF/VHF/UHF Optimized
LT5514	Ultralow Distortion, IF Amplifier/ADC Driver with Digitally Controlled Gain	850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range
LT5515	1.5 GHz to 2.5 GHz Direct Conversion Quadrature Demodulator	20dBm IIP3, Integrated LO Quadrature Generator
LT5516	0.8 GHz to 1.5 GHz Direct Conversion Quadrature Demodulator	21.5dBm IIP3, Integrated LO Quadrature Generator
LT5517	40MHz to 900MHz Quadrature Demodulator	21dBm IIP3, Integrated LO Quadrature Generator
LT5518	1.5 GHz to 2.4 GHz High Linearity Direct Quadrature Modulator	22.8 dBm OIP3 at 2GHz, $-158.2 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, 50Ω Single-Ended LO and RF Ports, 4-Ch W-CDMA ACPR $=-64 \mathrm{dBc}$ at 2.14 GHz
LT5519	0.7 GHz to 1.4 GHz High Linearity Upconverting Mixer	17.1 dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50 Ω Matching, Single-Ended LO and RF Ports Operation
LT5520	1.3GHz to 2.3GHz High Linearity Upconverting Mixer	15.9 dBm IIP3 at 1.9 GHz , Integrated RF Output Transformer with 50Ω Matching, Single-Ended LO and RF Ports Operation
LT5521	10MHz to 3700 MHz High Linearity Upconverting Mixer	24.2 dBm IIP3 at 1.95 GHz , NF $=12.5 \mathrm{~dB}, 3.15 \mathrm{~V}$ to 5.25 V Supply, Single-Ended LO Port Operation
LT5522	400MHz to 2.7GHz High Signal Level Downconverting Mixer	4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF $=12.5 \mathrm{~dB}, 50 \Omega$ Single-Ended RF and LO Ports
LT5524	Low Power, Low Distortion ADC Driver with Digitally Programmable Gain	450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control
LT5525	High Linearity, Low Power Downconverting Mixer	50Ω Single-Ended LO and RF Ports, 17.6 dBm IIP3 at 1900 MHz , $\mathrm{I}_{\mathrm{CC}}=28 \mathrm{~mA}$
LT5526	High Linearity, Low Power Active Mixer	3 V to 5.3 V Supply, 16.5 dBm IIP3, 100 kHz to 2 GHz RF, $\mathrm{NF}=11 \mathrm{~dB}, \mathrm{I}_{\mathrm{CC}}=28 \mathrm{~mA}$, -65dBm LO-RF Leakage
LT5527	400MHz to 3.7GHz High Signal Level Downconverting Mixer	IIP3 $=23.5 \mathrm{dBm}$ and $\mathrm{NF}=12.5 \mathrm{~dB}$ at $1900 \mathrm{MHz}, 4.5 \mathrm{~V}$ to 5.25 V Supply, $\mathrm{I}_{\mathrm{CC}}=78 \mathrm{~mA}$, Single-Ended LO and RF Ports
LT5528	1.5 GHz to 2.4 GHz High Linearity Direct Quadrature Modulator	21.8 dBm OIP3 at $2 \mathrm{GHz},-159.3 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, $50 \Omega, 0.5 \mathrm{~V}_{\text {DC }}$ Baseband Interface, 4 -Ch W-CDMA ACPR $=-66 \mathrm{dBc}$ at 2.14 GHz
LT5568	700MHz to 1050MHz High Linearity Direct Quadrature Modulator	22.9 dBm OIP3, $-160 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, -46 dBc Image Rejection, -43dBm LO Leakage
RF Power Detectors		
LTC®5505	RF Power Detectors with >40dB Dynamic Range	300 MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5507	100kHz to 1000MHz RF Power Detector	100 kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5508	300 MHz to 7GHz RF Power Detector	44dB Dynamic Range, Temperature Compensated, SC70 Package
LTC5509	300MHz to 3GHz RF Power Detector	36dB Linear Dynamic Range, Low Power Consumption, SC70 Package
LTC5532	300MHz to 7GHz Precision RF Power Detector	Precision V ${ }_{\text {Out }}$ Offset Control, Adjustable Gain and Offset
LT5534	50MHz to 3GHz Log RF Power Detector with 60dB Dynamic Range	$\pm 1 \mathrm{~dB}$ Output Variation over Temperature, 38ns Response Time
LTC5536	Precision 600MHz to 7GHz RF Detector with Fast Comparater	25ns Response Time, Comparator Reference Input, Latch Enable Input, -26dBm to +12dBm Input Range
LT5537	Wide Dynamic Range Log RF/IF Detector	Low Frequency to 800MHz, 83dB Dynamic Range, 2.7V to 5.25V Supply

