Revision History 3
Features 4
General Description 4
Pad Configuration 5
Block Diagram 6
Pad Descriptions. 7
Functional Descriptions 8
Absolute Maximum Rating 23
Electrical Characteristics 23
Application Circuit (for reference only) 30
Bonding Diagram 33
Package Information 36
Ordering Information 37

Revision History

Features

(Segment mode)
■ Shift Clock frequency:
14 MHz (Max.) (VDD $=5 \mathrm{~V} \pm 10 \%)$
8 MHz (Max.) (VDD = 2.5V~4.5V)

- Adopts a data bus system

4-bit/8-bit parallel input modes are selected with a mode (MD) pin
Automatic transfer function with an enable signal

- Automatic counting function, when in the chip select mode causes the internal clock to be stopped by automatically counting 160 bits of input data.
(Common mode)
\square Shift clock frequency: 4.0 MHz (Max.)
■ Built-in 160-bits bi-directional shift register (divisible into 80-bits x 2)
\square Available in a single mode (160-bits shift register) or in a dual mode (80-bits shift register $\times 2$)
- Y1 \rightarrow Y160 Single mode
$-\mathrm{Y} 160 \rightarrow \mathrm{Y} 1 \quad$ Single mode
- Y1 \rightarrow Y80, Y81 \rightarrow Y160 Dual mode
- Y160 \rightarrow Y81, Y80 \rightarrow Y1 \quad Dual mode

The above 4 shift directions are pin-selectable
(Both segment mode and common mode)

- Supply voltage for LCD drive: 15.0 to 30.0V

■ Number of LCD driver outputs: 160
■ Low output impedance
■ Low power consumption

- Supply voltage for the logic system: +2.5 to +5.5 V
- CMOS process
- Not designed or rated as radiation hardened

General Description

The NT7701 is a 160-bit output segment/common driver LSI suitable for driving the large-scale dot matrix LCD panels used by PDA's, personal computers and workstations for example. Through the use of SST (Super Slim TCP) technology, it is ideal for substantially decreasing the size of the frame section of the LCD module. The NT7701 is good as both a segment driver and a common driver, and a low power consuming, high-precision LCD panel display can be assembled using the NT7701. In the segment mode, the data input is selected 4bit parallel input mode or as 8bit parallel input mode by a mode (MD) pin. In common mode, the data input/output pins are bi-directional and the four data shift directions are pin-selectable.

NDVATEK

Pad Configuration

NDVATEK

Block Diagram

Pad Descriptions

Pad No.	Designation	I/O	Description
1,2	L/R	I	Display data shift direction selection.
3,4	VDD	P	Power supply for the logic system (+2.5 to +5.5V).
5,6	S/C	I	Segment mode/common mode selection.
7,8	EIO2	I/O	Input/output for chip selection or data of the shift register.
$9 \sim 22$	D0 ~ D6	I	Display data input for segment mode.
23,24	D7	I	Display data input for Segment mode/ Dual mode data input.
25,26	XCK	I	Display data shift clock input for segment mode.
27,28	/DISPOFF	I	Control input for deselect output level.
29,30	LP	I	Latch pulse input/shift clock input for the shift register.
31,32	EIO1	I	Input/output for chip select or data of the shift register.
33,34	FR	I/O	AC-converting signal input for LCD driver waveform.
35,36	MD	I	Mode selection input.
37,38	VSS	P	Ground (0V), these two pads mustbe connected to each other.
39,40	V5R	I	Power supply for LCD driver.
41,42	V43R	P	Power supply for LCD driver.
43,44	V12R	P	Power supply for LCD driver.
45,46	V0R	P	Power Supply for LCD driver.
$47 \sim 206$	Y1 \sim Y160	P	LCD driver output.
2207,208	VOL	P	Power supply for LCD driver.
209,210	V12L	O	Power supply for LCD driver.
211,212	V43L	P	Power supply for LCD driver.
213,214	V5L	P	Power supply for LCD driver.
215,216	VSS	P	Ground (0V), these two pads must be connected to each other.

Functional Descriptions

Block Description

Active Control

In the case of the segment mode, controls the selection or deselection of the chip. Following an LP signal input, and after the select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is deselected.
In common mode, controls the input/output data of bi-directional pins.

SP Conversion \& Data Control

In segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time.

Data Latch Control

In the case of the segment mode, it selects the state of the data latch, which reads in the data bus signals. The shift direction is controlled by the control logic and for every 16 bits of data read in, the selection signal shifts one bit, based on the state of the control circuit.

Data Latch

In the case of the segment mode, it latches the data on the data bus. The latched state of each LCD driver output pin is controlled by the control logic and the data latch controlling 160 bits of data are read in 20 sets of 8 bits.

Line Latch / Shift Register

In the case of the segment mode, all 160 bits that have been read-into the data latch are latched on to the falling edge of the EP signal and output to the level shift block simultaneously.
In the case of the common mode, shifts data from/the data input pin on to the falling edge of the LP signal.

Level Shifter

The logic voltage signal is level-shifted to the LCD driver voltage level, and output to the driver block.

4-Level Driver

It drives the LCD driver output pins from the line latch/shift register data, selecting one of 4 levels (V0, V12, V43, V5) based on the S/C, FR and /DISPOFF signals.

Control Logic

It controls the operation of each block. In the case of the segment mode, when an LP signal has been input, all blocks are reset and the control logic waits for the selection signal output from the active control block. Once the selection signal has been output, operation of the data latch and data transmission are controlled, 160 bits of data are read in, and the chip is deselected.
In common mode, it controls the direction of the data shift.

Input / Output Circuits

Pad Function
Segment mode

Symbol	Function
VDD	Logic system power supply pin connects to +2.5 to +5.5 V .
VSS	Ground pin connects to 0V.
VOR, VOL V12R, V12L V43R, V43L V5R, V5L	Power supply pin for LCD driver voltage bias. - Normally, the bias voltage used is set by a resistor divider. - Ensure that the voltages are set such that $\mathrm{VSS} \leq \mathrm{V} 5<\mathrm{V} 43<\mathrm{V} 12<\mathrm{V} 0$. - To further reduce the differences between the output waveforms of the LCD driver output pins Y 1 to Y 160 , externally connect ViR and ViL ($\mathrm{i}=0,12,43,5$).
D0 ~ D7	Input pin for display data. - In 4-bit parallel input mode, input data into the 4 pins D0 ~ D3. Connect D4~D7 to VSS or VDD. - In 8-bit parallel input mode, input data into the 8 pins D0 ~ D7.
XCK	Clock input pin for taking display data. - Data is read on the falling edge of the clock pulse.
LP	Latch pulse input pin for display data. - Data is latched on the falling edge of the clock pulse.
L/R	Direction selection pin for reading display data. - When set to VSS level "L", data is read sequentially from Y160 to Y1. - When set to VDD level " 4 ", data is read sequentially from Y1 to $Y 160$.
	Control input pin for output deselect level. - The input signal is level-shifted from logic voltage level to LCD driver voltage level, and controls LCD driver circuit. - When set to " L ", the LCD driver output pins Y1 to Y160 are set to level V5. -While /DISPOFF is set to "L", the contents of the line latch are reset, but the display data in the data latch are read regardless of the condition of /DISPOFF. When the /DISPOFF function is canceled, the driver outputs deselect level (V12 or V43), then outputs the contents of the data latch on to the next falling edge of the LP. At that time, if /DISPOFF removal time can not regulate what is shown AC characteristics, can not output the reading data correctly.
FR	AC signal input for LCD driving waveform. - The input signal is level-shifted from the logic voltage level to the driver voltage level, and controls the LCD driver circuit. - Normally inputs a frame inversion signal. The LCD driver output pin's output voltage level can be set to the line latch output signal and the FR signal.
MD	Mode selection pin. - When set to VSS level " L ", 4-bit parallel input mode is set. - When set to VDD level "H", 8-bit parallel input mode is set.

Segment mode (continuous)

Symbol	Function
S/C	Segment mode / common mode selection pin. - When set to VDD level " H ", segment mode is set. - When set to VSS level "L", common mode is set.
EIO1, EIO2	Input/output pin for chip selection. - When L/R input is at VSS level "L", EIO1 is set for output, and EIO2 is set for input. - When L/R input is at VDD level "H", EIO1 is set for input, and EIO2 is set for output. - During output, it is set to " H " while LP */(XCK) is "H" and after 160 -bits of data have been read, it is set to " L " for one cycle (from falling edge to falling edge of XCK), after which it returns to " H ". - During input, after the LP signal is input, the chip is selected while El is set to " L ". After 160 -bits of data have been read, the chip is deselected.
Y1 ~ Y160	LCD driver output pins - These correspond directly to each bit of the data latch, and one level (V0, V12, V43, or V 5) is selected and the output.

Common mode

Symbol	Function
VDD	Logic system power supply pin connects to +2.5 to +5.5 V .
VSS	Ground pin connects to OV .
VOR, VOL V12R, V12L V43R, V43L V5R, V5L	Power supply pin for LCD driver voltage bias. - Normally, the bias voltage used is set by a resistor divider. - Ensure that the voltages are set such that VSS $\leq \mathrm{V} 5<\mathrm{V} 43<\mathrm{V} 12<\mathrm{V} 0$. - To further reduce the differences between the output waveforms of the LCD driver output pins Y 1 to Y 160 , externally connect ViR and $\mathrm{ViL}(\mathrm{i}=0,12,43,5)$.
EIO1	Bi-directional shift register shift data input/output pin. - Is an Output pin when L/R is at VSS level " L " and an input pin when L/R is at VDD level "H". - When EIO1 is used as an input pin, it will be pulled-down internally. - When EIO1 is used as an output pin, it won't be pulled-down internally
EIO2	Bi-directional shift register shift data input/output pin. - Is an Input pin when L/R is at VSS level "L" and an outputpin when L/R is at VDD level "H". - When EIO2 is used as an input pin, it will be pulled-down internally. -When EIO2 is used as an output pin, it won't be pulled-down internally.
LP	Bi-directional shift register shift clock pulse input pin. - Data is shifted on the falling edge of the clock pulse.
L/R	Bi-directional shift register shift direction selection pin. - Data is shifted from Y160 to $Y 1$ when it is set to VSS level " L ", and data is shifted from Y 1 to Y 160 when it is set to VDD level " H ".
	Control input pin for output deselect level. - The input signal is level-shifted from logic voltage level to LCD driver voltage level, and controls the LCD driver circuit. - When set to " \llcorner ", the LCD driver output pins Y1 to Y160 are set to level V5. - While IDISPOFF is set to "L", the contents of the line latch are reset, but the display data in the data latch are read regardless of the condition of /DISPOFF. When the /DISPOFF function is canceled, the driver outputs deselect level (V12 or V43), then outputs the contents of the data latch onto the next falling edge of the LP. At that time, if /DISPOFF removal time can not regulate what is shown AC characteristics, can not output the reading data correctly.
FR	AC signal input for LCD driving waveform. - The input signal is level-shifted from the logic voltage level to the driver voltage level, and controls LCD driver circuit. - Normally inputs a frame inversion signal. The LCD driver output pin's output voltage level can be set to the line latch output signal and the FR signal.
MD	Mode selection pin. - When set to VSS level "L", single mode operation is selected. When set to VDD level " H ", dual mode operation is selected.

Common mode (continuous)

Symbol	Function
D7	Dual Mode data input pin. - According to the data shift direction of the data shift register, data can be input starting from the 161st bit. When the chip is used as dual mode, D7 will be pulled-down internally. When the chip is used as a single mode, D7 won't be pulled-down internally.
S/C	Segment mode / common mode selection pin. - When set to VSS level "L", common mode is set.
D0~D6	Not used. - Connect D0 ~ D6 to VSS or VDD, to avoid floating.
XCK	Not used. - XCK is pull-down in common mode, so connect to VSS or open.
Y1 ~ Y160	LCD driver output pins. - These correspond directly to each bit of the data latch, and one level (V0, V12, V43, or V5) is selected and the output.

LCD Driver Output Voltage Level

The relationship amongst the data bus signal, AC converted signal FR and LCD driver output voltage is as shown in the table below:
Segment Mode

FR	Latch Data	IDISPOFF	Driver Output Voltage Level (Y1~Y160)
L	L	H	V43
L	H	H	V5
H	L	H	V12
H	H	H	V0
X	X	L	V5

Here, VSS $\leq \mathrm{V} 5<\mathrm{V} 43<\mathrm{V} 12<\mathrm{V} 0, \mathrm{H}: \mathrm{VDD}(+2.5$ to +5.5 V), L: VSS (0V), X: Don't care
Common Mode

FR	Latch Data	IDISPOFF	Driver Output Voltage Level (Y1 -Y160)
L	L	H	
L	H	H	
H	L	H	V43
H	H		
X	X	L	

Here, VSS $\leq \mathrm{V} 5<\mathrm{V} 43<\mathrm{V} 12<\mathrm{V} 0, \mathrm{H}: \mathrm{VDD}(+2.5$ to $+5.5 \mathrm{~V})$, L: VSS (0V), X: Don't care
Note: There are two kinds of power supply (logic level voltage, LCD driver voltage) for the LCD driver.
Please supply regular voltage, which is assigned by specification for each power pin.
At that time "Don't care" should be fixed to "H" or "L", to avoid floating.

NOVATEK

Relationship between the Display Data and Driver Output Pins

Segment Mode
(a) 4-bit Parallel Mode

MD	L/R	ElO1	EIO2	Data Input	Number of Clock						
					$1^{\text {st }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	\sim	$38^{\text {th }}$	$39^{\text {th }}$	$40^{\text {th }}$
L	L	Output	Input	D0	Y157	Y153	Y149	\sim	Y9	Y5	Y1
				D1	Y158	Y154	Y150	\sim	Y10	Y6	Y2
				D2	Y159	Y155	Y151	\sim	Y11	Y7	Y3
				D3	Y160	Y156	Y152	\sim	Y12	Y8	Y4
L	H	Input	Output	D0	Y4	Y8	Y12	\sim	Y152	Y156	Y160
				D1	Y3	Y7	Y11	\sim	Y151	Y155	Y159
				D2	Y2	Y6	Y10	\sim	Y150	Y154	Y158
				D3	Y1	Y5	Y9	\sim	Y149	Y153	Y157

(b) 8-bit Parallel Mode

MD	L/R	EIO1	EIO2	Data Input	Number of Clock						
					$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rod }}$	~)	$18^{\text {th }}$	$19^{\text {th }}$	$20^{\text {th }}$
H	L	Output		D0	Y153	Y145	7137	\sim	Y17	Y9	Y1
				D1	Y154	Y146	Y138	~	Y18	Y10	Y2
				D2	Y155	Y147	Y139	-	Y19	Y11	Y3
				D3	Y156	Y148	Y140	7	Y20	Y12	Y4
				D4	Y157	Y149	Y141	\sim	Y21	Y13	Y5
				D5	Y158	Y150) Y142	\sim	Y22	Y14	Y6
N				D6	Y159	Y151	Y143	\sim	Y23	Y15	Y7
				D7	Y160	Y152	Y144	\sim	Y24	Y16	Y8
H	H	Input	Output	D0	Y8	Y16	Y24	\sim	Y144	Y152	Y160
				D1	Y7	Y15	Y23	\sim	Y143	Y151	Y159
				D2	Y6	Y14	Y22	\sim	Y142	Y150	Y158
				D3	Y5	Y13	Y21	\sim	Y141	Y149	Y157
				D4	Y4	Y12	Y20	\sim	Y140	Y148	Y156
				D5	Y3	Y11	Y19	\sim	Y139	Y147	Y155
				D6	Y2	Y10	Y18	\sim	Y138	Y146	Y154
				D7	Y1	Y9	Y17	\sim	Y137	Y145	Y153

Common Mode

MD	L/R	Data Transfer Direction	ElO1	ElO2	D7
L (Single)	L (shift to left)	Y160 to Y1	Output	Input	X
	H (shift to right)	Y1 to Y160	Input	Output	X
	L (shift to left)	Y160 to Y81 Y80 to Y1	Output	Input	Input
	H (shift to right)	Y1 to Y80 Y81 to Y160	Input	Output	Input

Here, L: VSS (0V), H: VDD (+2.5V to +5.5V), X: Don't care
Note: "Don't care" should be fixed to "H" or "L", to avoid floating.

NDVATEK

Connection Examples of Segment Drivers

Case of $L / R=$ " L "

NDVATEK

Timing Waveform of 4-Device Cascade Connection of Segment Drivers

NOVATEK

Connection Examples for Common Drivers

Case of $L / R=$ " L "

Single Mode (Shifting towards the right)

NOVATEK

Case of $L / R=$ " L "

Precaution

Be careful when connecting or disconnecting the power.
This LSI has a high-voltage LCD driver, so it may be permanently damaged by a high current, which may occur, if voltage is supplied to the LCD driver power supply while the logic system power supply is floating.
The details are as follows:

- When connecting the power supply, connect the LCD driver power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LCD driver power.
- We recommend that you connect a serial resistor ($50 \sim 100 \Omega$) or fuse to the LCD driver power V0 of the system as a current limiting device. Also, set a suitable value for the resistor in consideration of the LCD display grade.
In addition, when connecting the logic power supply, the logic condition of the LSI inside is insecure. Therefore connect the LCD driver power supply after resetting the logic condition of this LSI inside on /DISPOFF function. After that, the /DISPOFF cancels the function after the LCD driver power supply has become stable. Furthermore, when disconnecting the power, set the LCD driver output pins to level VSS on the /DISPOFF function. After that, disconnect the logic system power after disconnecting the LCD driver power.
When connecting the power supply, follow the recommended sequence shown.

Absolute Maximum Rating

DC Supply Voltage VDD .. 0.3 F to 7.0 V
DC Supply Voltage V0 .. -0.3V to +30.0V Input Voltage (Vin) ... - 0.3 V to VDD +0.3V
Operating Ambient Temperature .. $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature
$-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
*Comments
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

DC Characteristics

Segment Mode (VSS=V5=0V, VDD=2.5~5.5V, V0 $=15 \sim 30 \mathrm{~V}, \mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	5 Condition
VDD	Operating Voltage	2.5	-	5.5	V	D)
V0	Operating Voltage	15	-	30	V	,
VIH	Input high voltage	$\begin{aligned} & 0.8 X \\ & \text { VDD } \end{aligned}$	\bigcirc)	V	DO ©D $, ~ X C K, L P, L / R, F R, M D, S / C$,
VIL	Input low voltage	$\stackrel{5}{5}$	-	$\begin{aligned} & \hline 0.2 X \\ & \text { VDD } \end{aligned}$	v	EIO1, EIO2 and /DISPOFF pins
VOH	Output high voltage	$\begin{gathered} \text { VDD - } \\ 0.4 \end{gathered}$	\bigcirc	(.)	v	EIO1, EIO2 pins, $\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOt	Output low voltage	.		+0.4	V	EIO1, EIO2 pins, $\mathrm{IOL}=+0.4 \mathrm{~mA}$
IIH	Input leakage current 1	-	-	+1.0	$\mu \mathrm{A}$	D0 ~ D7, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2 and /DISPOFF pins, Vin = VDD
IIL	Input leakage current 2	-	-	-1.0	$\mu \mathrm{A}$	D0 ~ D7, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2 and /DISPOFF pins, $\text { Vin }=\text { VSS }$
RON	Output resistance	-	1.0	1.5	$K \Omega$	Y1 ~ Y160 pins, $\|\Delta \mathrm{VON}\|=0.5 \mathrm{~V}$
		-	1.5	2.0	K Ω	
ISB	Stand-by current	-	-	5.0	$\mu \mathrm{A}$	VSS pin, Note 1
IDD1	Consumed current 1 (Non-selection)	-	-	2.0	mA	VDD pin, Note 2
IDD2	Consumed current 2 (Selection)	-	-	8.0	mA	VDD pin, Note 3
10	Consumed current	-	-	1.0	mA	V0 pin, Note 4

Common Mode (VSS=V5=0V, VDD=2.5~5.5V, V0 $=15 \sim 30 \mathrm{~V}, \mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
VDD	Operating Voltage	2.5	-	5.5	V	
V0	Operating Voltage	15	-	30	V	
VIH	Input high voltage	0.8 X VDD	-	-	V	D0 ~ D7, XCK, LP, L/R, FR, MD, S/C,

Notes:

1. $\mathrm{VDD}=+5.0 \mathrm{~V}, \mathrm{VO}=+30 \mathrm{~V}, \mathrm{Vin}=\mathrm{VSS}$
2. $\mathrm{VDD}=+5.0 \mathrm{~V}, \mathrm{~V} 0=+30 \mathrm{~V}, \mathrm{fXCK}=14 \mathrm{MHz}$, No-load, $\mathrm{EIO}=\mathrm{VDD}$

The input data is turned over by the data taking clock (4-bit parallel input mode)
3. $\mathrm{VDD}=+5.0 \mathrm{~V}, \mathrm{~V} 0=+30 \mathrm{~V}, \mathrm{fXCK}=14 \mathrm{MHz}$, No-load. $\mathrm{EIO}=\mathrm{VSS}$

The input data is turned over by the data taking clock (4-bit parallel input mode)
4. $\mathrm{VDD}=+5.0 \mathrm{~V}, \mathrm{~V} 0=+30 \mathrm{~V}, \mathrm{fXCK}=14 \mathrm{MHz}, \mathrm{fLP}=41.6 \mathrm{kHz} . f F R=80 \mathrm{~Hz}, \mathrm{No}$-load

The input data is turned over by the data taking clock (4-bit parallel-input mode)
5. $\mathrm{VDD}=+5.0 \mathrm{~V}, \mathrm{~V} 0=+30 \mathrm{~V}, \mathrm{Vin}=\mathrm{VSS}$
6. $\mathrm{VDD}=+5.0 \mathrm{~V}, \mathrm{~V} 0=+30 \mathrm{~V}, \mathrm{fLP}=41.6 \mathrm{KHz}, \mathrm{fFR}=80 \mathrm{~Hz}$, case of $1 / 480$ duty operation, No-load

AC Characteristics

1. Timing Characteristics of Segment Mode

N®VATEK

Segment Mode 1 (VSS=V5=0V, VDD=4.5~5.5V, V0 $=15 \sim 30 \mathrm{~V}, \mathrm{Ta}=-30 \sim+85^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Shift clock period	twck	71	-		ns	tr, tf $\leq 10 \mathrm{~ns}$, Note 1
Shift clock "H" pulse width	twckh	23	-		ns	
Shift clock "L" pulse width	twckl	23	-		ns	
Data setup time	tos	10	-		ns	
Data hold time	toh	20	-		ns	
Latch pulse " H " pulse width	twLPH	23	-		ns	
Shift clock rise to Latch pulse rise time	tıd	0	-		ns	
Shift clock fall to Latch pulse fall time	tst	25	-		ns	
Latch pulse rise to Shift clock rise time	tıs	25	-		ns	
Latch pulse fall to Shift clock fall time	tLH	25	-		ns	1 N
Input signal rise time	tr		-	50	ns	Note 2
Input signal fall time	tf_{f}		-	50	ns	Note 2
Enable setup time	ts	21	,	,	ns	0
/DISPOFF Removal time	tsb	100	-		ns	,
/DISPOFF enable pulse width	twol	1.2	,	\bigcirc	$\mu \mathrm{s}$	
Output delay time (1)	to	1	-)	40	ns	CL=15pF
Output delay time (2)		$1 \square$	-	1.2	$\mu \mathrm{s}$	CL=15pF
Output delay time (3)	$\mathrm{t}_{\mathrm{pd} 3}$		-	1.2	$\mu \mathrm{s}$	CL=15pF

Note

1. Take the cascade connection into consideration.
2. (twck - twcкн - twckl)/2 is the maximum in the case of high speed operation.

NDVATEK

Segment Mode $2\left(\mathrm{VSS}=\mathrm{V} 5=0 \mathrm{~V}, \mathrm{VDD}=2.5 \sim 4.5 \mathrm{~V}, \mathrm{~V} 0=15 \sim 30 \mathrm{~V}, \mathrm{Ta}=-30 \sim+85^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Shift clock period	twck	125	-		ns	tr, tf $\leq 10 n s$, Note 1
Shift clock "H" pulse width	twckн	51	-		ns	
Shift clock "L" pulse width	twckl	51	-		ns	
Data setup time	tos	30	-		ns	
Data hold time	toh	40	-		ns	
Latch pulse "H" pulse width	twLph	51	-		ns	
Shift clock rise to Latch pulse rise time	tıd	0	-		ns	
Shift clock fall to Latch pulse fall time	tst	51	-		ns	
Latch pulse rise to Shift clock rise time	tıs	51	-		ns	\mathbb{A}
Latch pulse fall to Shift clock fall time	tLL	51	-		ns	
Input signal rise time	tr		-	50	ns	Note 2
Input signal fall time	t_{f}		4	50	ns	Note 2
Enable setup time	ts	36		5	ns)	\bigcirc
/DISPOFF Removal time	tsp	100		I	ns	,
/DISPOFF enable pulse width $\sqrt{\text { a }}$	twid	1.2	-	D)	$\mu \mathrm{s}$	
Output delay time (1)	to	T	\bigcirc	78	ns	CL=15pF
Output delay time (2)	tpd1, $t_{\text {pd2 }}$)V	-	1.2	$\mu \mathrm{s}$	CL=15pF
Output delay time (3)	tpd3		-	1.2	$\mu \mathrm{s}$	CL=15pF

Note

1. Take the cascade connection into consideration.
2. (twck - twcкн - twckl)/2 is the maximum in the case of high speed operation.
3. Timing Characteristics of Common Mode

NOVATEK

Common Mode (VSS=V5 $=0 \mathrm{~V}$, VDD $=2.5 \sim 5.5 \mathrm{~V}, \mathrm{~V} 0=15 \sim 30 \mathrm{~V}, \mathrm{Ta}=-30 \sim+85^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Shift clock period	twLp	250	-	-	ns	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
Shift clock "H" pulse width	twLPH	15	-	-	ns	VDD=5.0V $\pm 10 \%$
		30	-	-	ns	VDD=2.5~4.5V
Data setup time	tsu	30	-	-	ns	
Data hole time	t_{H}	50	-	-	ns	
Input signal rise time	tr		-	50	ns	
Input signal fall time	t_{f}		-	50	ns	
/DISPOFF Removal time	tso	100	-	-	ns	
/DISPOFF enable pulse width	twdL	1.2	-	-	$\mu \mathrm{s}$	81
Output delay time (1)	tbL	-	-	200	ns	$\mathrm{CL}=15 \mathrm{pF}$ D
Output delay time (2)	$\mathrm{t}_{\text {pd1 }} \mathrm{t}_{\text {pd2 }}$	-	-	1.2	$\mu \mathrm{s}$	$\mathrm{CL}=15 \mathrm{pF}$
Output delay time (3)	$\mathrm{t}_{\text {pd }}$	-		1.2	Hs	$\mathrm{CL}=15 \mathrm{pF}$

NDVATEK

Application Circuit (for reference only)

Segment Mode: (L/R=H , 8bit mode)

Note

1. $R=20 \mathrm{~K} \Omega \sim 100 \mathrm{~K} \Omega$

Example of $R B \& R$:

$$
\begin{aligned}
\rightarrow \text { If } \mathrm{R} & =20 \mathrm{~K} \Omega, \text { bias }=1 / 22, \text { duty }=1 / 480 \\
\rightarrow \mathrm{RB} & =(22-4)^{*} 20 \mathrm{~K} \Omega \\
& =360 \mathrm{~K} \Omega
\end{aligned}
$$

2. $\mathrm{VR}=50 \mathrm{~K} \Omega, \mathrm{R} 2=22 \mathrm{~K} \Omega$ (Adjust $\mathrm{VR} \& \mathrm{R} 2$ to get best range and contrast)
3. $\mathrm{C} 1=2.2 \sim 4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$ (depend on LCD panel size), $\mathrm{C} 2=0.1 \mu \mathrm{~F} / 10 \mathrm{~V}, \mathrm{R} 1=15 \Omega$.

Common Mode: (L/R=H, Single mode)

2. $\mathrm{VR}=50 \mathrm{~K} \Omega$, $\mathrm{R} 2=22 \mathrm{~K} \Omega$ (Adjust $\mathrm{VR} \& \mathrm{R} 2$ to get best range and contrast)
3. $\mathrm{C} 1=2.2 \sim 4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$ (depend on LCD panel size), $\mathrm{C} 2=0.1 \mu \mathrm{~F} / 10 \mathrm{~V}, \mathrm{R} 1=15 \Omega$.

Application \& ITO Layout Notice (for reference only)

Application Notices

1. Adjust the voltage of V 1 and V 4 you can amend the phenomena of "cross talk" (V1\& V4 range of adjusting is less than 100 mV , be sure $\mathrm{V} 0-\mathrm{V} 1=\mathrm{V} 4-\mathrm{VSS}$ after adjusting.
2. Add $0.1 \mu \mathrm{f}$ high frequency capacitors between VDD \& V0 ~ V4 and VSS.
3. When OP (LP324) is used as following bias voltage, be sure OP power voltage must be 1.5 V (or more) higher than output voltage.
4. XCK, D0~D7, LP are high frequency (Max. 14 MHz) signals, pay attention to the distance between them and other signals nearby to avoid high frequency interference.
5. EIO1, EIO2 are enable signals for connecting chips, pay attention to the distance between them and other signals nearby to avoid interference. The distance of connection between two chips is the shorter better.

ITO Layout Notice (It is for application of COG type)

1. We suggest that the LCD panel is made of glass whose ITO resistor is about $15 \Omega /$ square, powers ITO are better if they are straight, its resistor value is the smaller the better.
2. Among interface Pins, first to be sure ITO resistors value of VDD, VSS and V0 ~ $\vee 4$ are less than values we suggest. It is shown below:

- ITO resistance value of power pins.

- ITO resistance value of digital pins.

ITO path	Max. Resistance (Ω)
XCK, D0~D7, LP	500
EIO1, EIO2, FR, L/R,	1 K
S/C, MD, /DISPOFF	

3. Single VSS and V0, V12, V43, V5 R/L are connected to FPC by ITO separately. At last shorten the distance of ITO by using metal on PCB.
4. VDD/VSS of IC and VDD/VSS of FPC are at the same vertical level as far as possible, ITO can be straight.
5. The distance of connection between IC to FPC is the shorter the better.

NOVATEK

Bonding Diagram

Pad Location

Pad No.	Designation	X	Y
1	L/R	-3600	-440
2	L/R	-3440	-440
3	VDD	-3280	-440
4	VDD	-3120	-440
5	S/C	-2000	-440
6	S/C	-1840	-440
7	EIO2	-1680	-440
8	EIO2	-1520	-440
9	D0	-1360	-440
10	D0	-1200	-440
11	D1	-1040	-440
12	D1	-880	- -440
13	D2	-720	-440
14	D2	-560	1-440
15	D3	-400) -440
16	D3	-240	-440
17	D4	-80	-440
18	D4	80	-440
19	D5	240	-440
20	D5	400	-440
21	D6	560	-440
22	D6	720	-440
23	D7	880	-440
24	D7	1040	-440
25	XCK	1200	-440
26	XCK	1360	-440
27	/DISPOFF	1520	-440
28	/DISPOFF	1680	-440
29	LP	1840	-440
30	LP	2000	-440
31	ElO1	2160	-440
32	EIO1	2320	-440

Pad No.	Designation	X	Y
33	FR	2480	-440
34	FR	2640	-440
35	MD	2800	- 440
36	MD	2960	-440
37	VSS	3779	-410
38	VSS	- 3779	-350
39	V5R	3779	-300
40	JV5R	- 3779	-250
41	V43R	-3779	-200
42	$\bigcirc{ }^{\sim} 43 \mathrm{R}$	3779	-150
43	V12R	3779	-100
44	V12R	3779	-50
45	V0R	3779	0
46	V0R	3779	50
47	Y1	3779	100
48	Y2	3779	150
49	Y3	3779	200
50	Y4	3779	250
51	Y5	3779	300
52	Y6	3779	350
53	Y7	3779	410
54	Y8	3635	440
55	Y9	3575	440
56	Y10	3525	440
57	Y11	3475	440
58	Y12	3425	440
59	Y13	3375	440
60	Y14	3325	440
61	Y15	3275	440
62	Y16	3225	440
63	Y17	3175	440
64	Y18	3125	440

NDVATEK
NT7701

Pad Location (continued)

Pad No.	Designation	X	Y	Pad No.	Designation	X	Y
65	Y19	3075	440	107	Y61	975	440
66	Y20	3025	440	108	Y62	925	440
67	Y21	2975	440	109	Y63	875	440
68	Y22	2925	440	110	Y64	825	440
69	Y23	2875	440	111	Y65	775	440
70	Y24	2825	440	112	Y66	725	440
71	Y25	2775	440	113	Y67	675	440
72	Y26	2725	440	114	Y68	625	440
73	Y27	2675	440	115	Y69	575	440
74	Y28	2625	440	116	Y70	525	440
75	Y29	2575	440	117	Y71	475	440
76	Y30	2525	440	118	Y72	425	440
77	Y31	2475	440	119	Y73	375	440
78	Y32	2425	440	120	Y74	325	440
79	Y33	2375	440	121	Y75	275	440
80	Y34	2325	440	122	Y76	1 225	440
81	Y35	2275	440	123	Y77	175	440
82	Y36	2225	440	- 124	Y78	125	440
83	Y37	2175	440	125	Y79	75	440
84	Y38	2125	440	126	(Y80)	25	440
85	Y39	2075 /	440	127) Y81	-25	440
86	Y40	2025	> 440	128	Y82	-75	440
87	Y41	1975	440	129	Y83	-125	440
88	Y42	- 1925	D 440	130	Y84	-175	440
89	Y43	1875	1440	131	Y85	-225	440
90	Y44	1825	- 440	132	Y86	-275	440
91	Y45	1775	440	133	Y87	-325	440
92	Y46	1725	440	134	Y88	-375	440
93	Y47	1675	440	135	Y89	-425	440
94	Y48	1625	440	136	Y90	-475	440
95	Y49	1575	440	137	Y91	-525	440
96	Y50	1525	440	139	Y92	-575	440
97	Y51	1475	440	139	Y93	-625	440
98	Y52	1425	440	140	Y94	-675	440
99	Y53	1375	440	141	Y95	-725	440
100	Y54	1325	440	142	Y96	-775	440
101	Y55	1275	440	143	Y97	-825	440
102	Y56	1225	440	144	Y98	-875	440
103	Y57	1175	440	145	Y99	-925	440
104	Y58	1125	440	146	Y100	-975	440
105	Y59	1075	440	147	Y101	-1025	440
106	Y60	1025	440	148	Y102	-1075	440

NDVATEK
NT7701

Pad Location (continued)

Dummy Pad Location (Total: 10 pads)

NO	X	Y									
1	-2960	-440	4	-2480	-440	7	3120	-440	10	3600	-440
2	-2800	-440	5	-2320	-440	8	3280	-440			
3	-2640	-440	6	-2160	-440	9	3440	-440			

Package Information

Pad Dimensions

Alignment Marks: (Unit : $\mu \mathrm{m}$)

ALK_L

ALK_R

Ordering Information

Part No.	Package
NT7701H-BDT	Au bump on chip tray
NT7701H-TABF1	TCP form
NT7701H-TABF2	TCP form
NT7701H-TABF3	TCP form

Cautions

1. The contents of this document are subject to change without notice.
2. Precautions against light projection:

Light has the effect of causing the electrons of semiconductor to move; so light projection may change the characteristics of semiconductor devices. For this reason, it is necessary to take account of effective protection measures for the packages (such as COB, COG, TCP and COF, etc.) causing chip to be exposed to a light environment in order to isolate the projection of light on any part of the chip, including top, bottom and the area around the chip.
Observe the following instructions in using this product.
a. During the design stage, it is necessary to notice and confirm the light sensitivity and preventive measures for using IC on substrate (PCB, Glass or Film) or product.
b. Test and inspect the product under an environment free of light source penetration.
c. Confirm that all surfaces around the IC will not be exposed to a light source.

