

62-129AUNC/T4048M3M6PBD/TR8-T

Features

- Top view white LED
- High flux output
- High current capability
- White package
- Wide viewing angle
- Pb-free
- ESD protection
- The product itself will remain within RoHS compliant version.

Descriptions

• Due to the package design, 62-129A package has wide viewing angle, low power consumption and white LEDs are devices which are materialized by combing blue chips and special phosphor. This feature makes the LED ideal for light guide application.

Applications

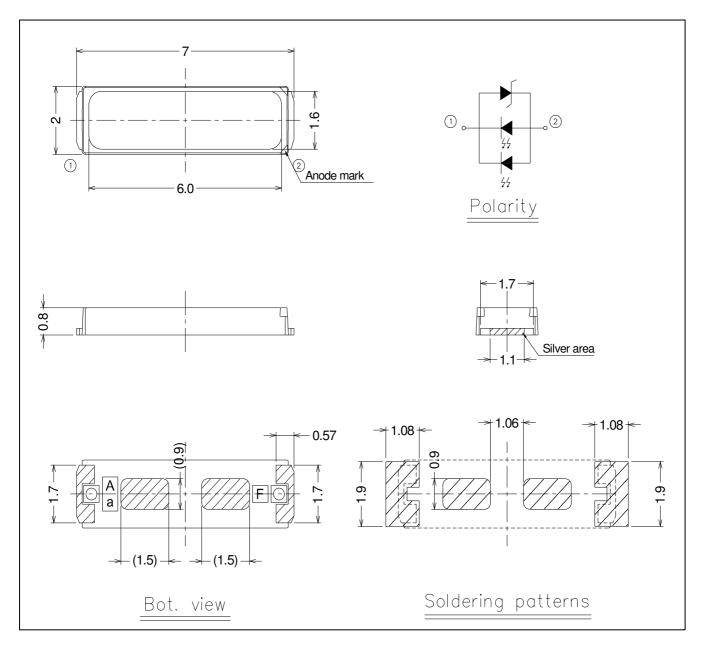
- Backlight for LCD Monitor/TV
- Light pipe application
- Indicator and backlight in office and family equipment
- General use

Device Selection Guide

	Chip				
Material	Factory	Dimension	wavelength		
InGaN	Epistar	17 x 34	447.5~452.5		
Emitted Color	Resin Color	Chin niatura			
Cold White	Water Clear	Chip picture	V		

Coding

62-129AUNC/ <u>xx xx xxxx</u> P<u>xx</u>/TR8-T


Chips in Parallel Connection
Range of Forward Voltage
Block of Chromaticity Coordinate
Maximum Luminous Flux
———— Minimum Luminous Flux

62-129AUNC/T4048M3M6PBD/TR8-T

Package Outline Dimensions

Note: The tolerance unless mentioned is ± 0.1 mm, unit = mm.

Absolute Maximum Ratings (Ta=25°		<u>UNC/T4048M3M6P</u>	BD/TR8-7
Parameter	Symbol	Rating	Unit
Reverse Voltage ^{*1}	V _R	5	V
Forward Current ^{*1}	$I_{\rm F}$	100	mA
Peak Forward Current (Duty 1/10 @10ms) ^{*1}	I _{FP}	300	mA
Power Dissipation	Pd	680	mW
Electrostatic Discharge(HBM) ^{*2}	ESD	5000	V
Operating Temperature	Topr	-40 ~ +85	°C
Storage Temperature	Tstg	-40 ~ +100	°C
Thermal Resistance Junction/ambient	Rth _{j-a}		°C/W
Thermal Resistance Junction/solder point	Rth_{j-s}		°C/W
Junction temperature	T _j	≦110	°C
Soldering Temperature	Tsol	Reflow Soldering: 260 °C for 10 sec. Hand Soldering: 350 °C for 3 sec.	

Notes: 1. For each die

2. The products are sensitive to static electricity and must be carefully taken when handling products.

Electro-Optical Characteristics (Ta=25°C)

Electro optical characteristics (14 20 0)						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Flux	Ф	40		50	lm	
Viewing Angle	2 heta 1/2		120		Deg.	I _F =150mA
Forward Voltage	V_{F}	3.0		3.4	V	

Notes: 1. Tolerance of Luminous Flux: ±5%

2. Tolerance of Forward Voltage: ±0.05V

62-129AUNC/T4048M3M6PBD/TR8-T

Bin Range of Luminous Flux

Bin Code	Lı	n	Condition	MCD		
Din Code	Min.	Max.	Condition	Min.	Max.	
T40	40	42		13301.6	13966.68	
T42	42	44	I _F =150mA	13966.68	14631.76	
T44	44	46		14631.76	15296.84	
T46	46	48		15296.84	15961.92	
T48	48	50		15961.92	16627	

Note: Tolerance of Luminous Intensity: ±5%

Bin Range of Forward Voltage

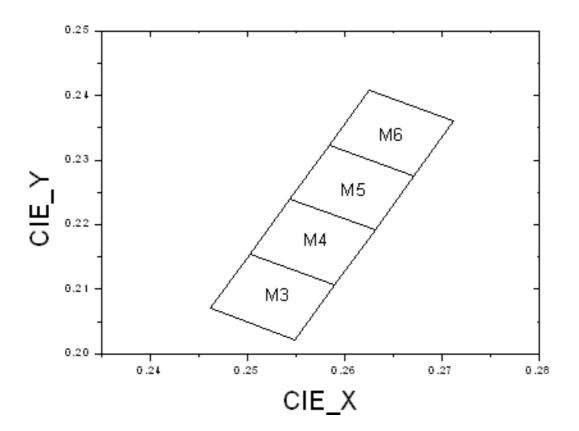
Bin Code	Min.	Max.	Unit	Condition
PB	3.0	3.2		1.1.50
PD	3.2	3.4	V	I _F =150mA

Note: Tolerance of Forward Voltage: ±0.05V

Bin Range of λp

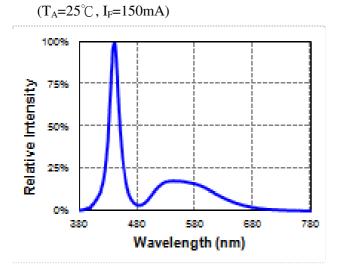
Bin Code	Min.	Max.	Unit	Condition
P40	440	445		I 150 A
P45	445	450	nm	I _F =150mA

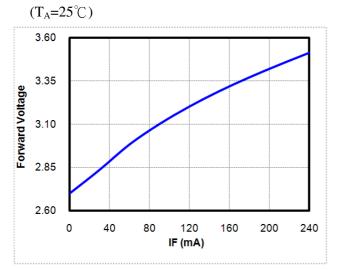
Note: Tolerance of λ p: ±2nm



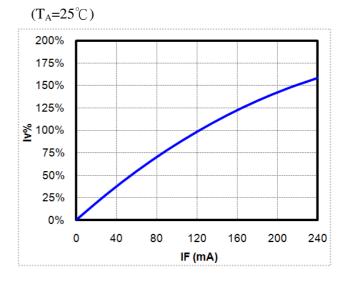
62-129AUNC/T4048M3M6PBD/TR8-T **Bin Code of Chromaticity Coordinates Bin Code Bin Code** CIE_x CIE_y CIE_x Condition CIE_y 0.2503 0.2154 0.2584 0.2323 0.2462 0.2070 0.2544 0.2239 M3 M5 0.2549 0.2022 0.2631 0.2191 0.2590 0.2106 0.2671 0.2275 I_F=150mA 0.2631 0.2191 0.2625 0.2408 0.2590 0.2106 0.2584 0.2323 M4 M6 0.2503 0.2154 0.2671 0.2275 0.2544 0.2239 0.2712 0.2360

Note: Tolerance of Chromaticity Coordinates: ±0.005

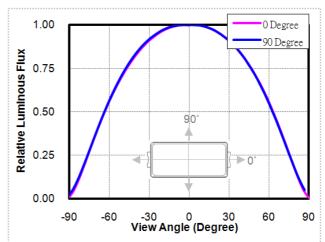

The C.I.E. 1931 Chromaticity Diagram



Typical Electro-Optical-Thermal Characteristics Curves

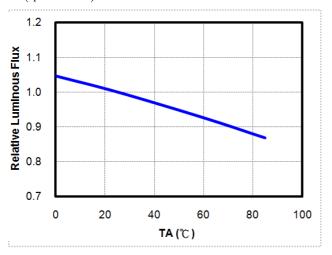

1. Spectrum Distribution

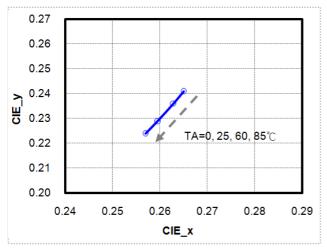
3. Relative Forward Voltage vs. Forward Current



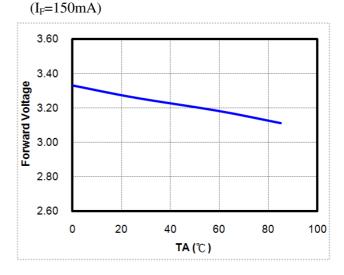
2. Relative Luminous Flux vs. Forward Current

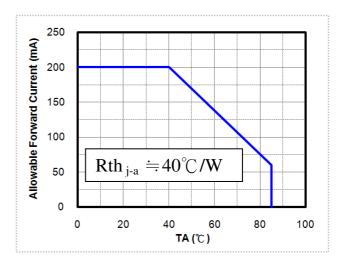
4. Radiation Diagram


 $(T_A=25^{\circ}C, I_F=150mA)$



Typical Electro-Optical-Thermal Characteristics Curves

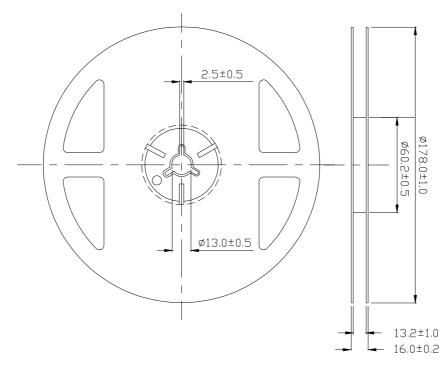

5. Relative Luminous Flux vs. Ambient Temperature $(I_F=150mA)$


7. Chromaticity Coordinates vs. Ambient Temperature (I_F=150mA)

6. Forward Voltage vs. Ambient Temperature

8. Forward Current De-rating Curve

Label Explanation

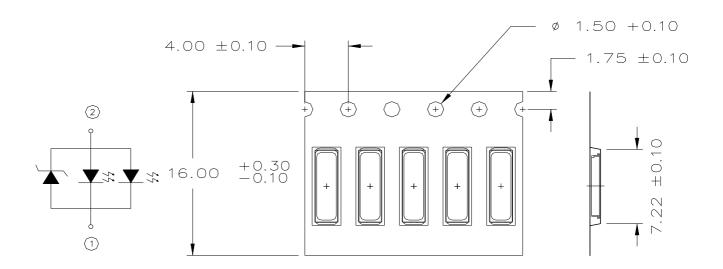

CAT: Luminous Flux Rank

- λp : Wavelength Rank
- HUE: Chromaticity Coordinates
- REF: Forward Voltage Rank

62-129AUNC/T4048M3M6PBD/TR8-T

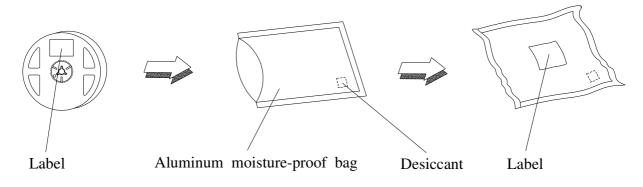
Pb EVER	LIGHT 10
CPN: P/N: 373001B104	RoHS
P/N: 373001B104 30-01USOC/OMA	ROHS
	CAT: R123456789
QTY: 6000	λp: ₽40
	HUE: 20
	REF: 10
LOT NO: EL0701011234	567890 EFADFC
REFERENCE : B070111A	MADE IN TAIWAN

Reel Dimensions



Note: The tolerances unless mentioned is ±0.1mm,Unit = mm

http://www.everlight.com Prepared date: 11-June-2012



Carrier Tape Dimensions: Loaded Quantity 250 up/500/1000/2000 pcs. Per Reel

Note: The tolerances unless mentioned is ±0.1mm,Unit = mm

Moisture Resistant Packaging

Technical Data Sheet

Top View LEDs

62-129AUNC/T4048M3M6PBD/TR8-T

Reliability Test Items and Conditions

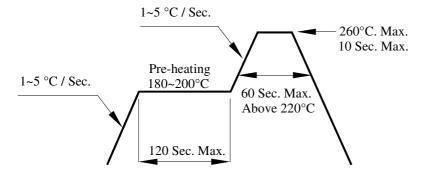
The reliability of products shall be satisfied with items listed below. Confidence level : 90% LTPD : 10%

No.	Item	Test Coniti	ion	Test Hours/	Criteria	
INO.	nem	Temp./ Humidity IF (mA)		Times	(at std. IF)	
1	Reflow Soldering	Temp.: 260℃±5℃ Max. 10 sec.		2 times	\triangle lv < ±5% \triangle VF < ±5%	
2	Thermal Cycle	-40℃ ~ 100℃ 30min. (5min.) 30min.		200 cycles		
3	Thermal Shock	-40℃ ~ 20min. (<15sec.	100℃) 20min.	200 cycles		
4	Low Temp. Storage	TA=-40 ℃		1000 hrs		
5	High Temp. Storage	TA=100 ℃		1000 hrs		
6	Temp. Humidity Storage	TA=85℃/ 85%RH		1000 hrs		
7	Steady State Operating Life of Low Temp.	TA=-40 ℃	std.	1000 hrs	lv > 70%, VF < 110%,	
8	Steady State Operating Life Condition 1	TA=25℃/ Room Hum.	Chip Allowable Max. Current	1000 hrs		
9	Steady State Operating Life Condition 2	TA=60°℃	std.	1000 hrs		
10	Steady State Operating Life of High Temp.	TA=85℃	Depend on De-rating Curve	1000 hrs		
11	Steady State Operating Life of High Humidity Heat	TA=60℃/ 90%RH	std.	1000 hrs		

X Sampling for each test item: 22 (pcs.)

62-129AUNC/T4048M3M6PBD/TR8-T

Precautions for Use


1. Over-current-proof

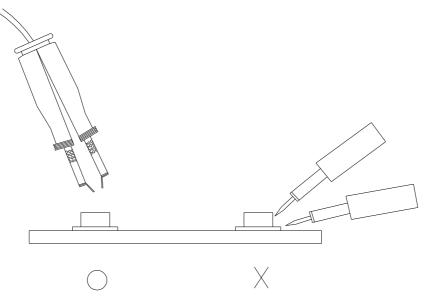
Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

- 2. Storage
 - 2.1 Do not open moisture proof bag before the products are ready to use.
 - 2.2 Before opening the package: The LEDs should be kept at 30 $^\circ\!\mathrm{C}$ or less and 90%RH or less.
 - 2.3 After opening the package: 2.3 After opening the package: The LED's floor life is 1 year under 30° C or less and 60% RH or less.

If unused LEDs remain, it should be stored in moisture proof packages.

- 2.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: 60±5°C for 24 hours.
- 3. Soldering Condition
 - 3.1 Pb-free solder temperature profile

- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.


62-129AUNC/T4048M3M6PBD/TR8-T

4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350° C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

EVERLIGHT ELECTRONICS CO., LTD.	<i>Tel:</i> 886-2-22685-6688,
Office: No.6-8, Zhoughua Rd.	Fax: 886-22685-6880,
Shulin Dist., New Taipei City, 23860, Taiwan, R.O.C	http://www.everlight.com

http://www.everlight.com Prepared date: 11-June-2012