

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1280800F1TNQW-00
APPROVED BY	
DATE	

☑ Approved For Specifications□ Approved For Specifications & Sample

AMPIRE CO., LTD. Building A., 4F., No.116, Sec. 1, Sintai 5th Rd., Xizhi Dist, New Taipei City 221, Taiwan (R.O.C.) 新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2012/5/29		New Release	Leo

1. Features

10.1 TFT Liquid Crystal Display module is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. It is composed of a TFT LCD panel, a timing controller, voltage reference, common voltage, column driver, and row driver circuit. This TFT LCD has a 10.1-inch diagonally measured active display area with 1280 horizontal \times 800 vertical pixel array resolutions.

2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
LCD size	10.1 (Diagonal)	inch
Driver element	a-Si TFT active matrix	
Display resolution	1280 (W) × 3(RGB) x 800(H)	dots
Display mode	Normally white, Transmissive	
Dot pitch	0.0565 (W) x0.1695 (H)	mm
Active area	216.96 (W) x 135.6 (H)	mm
Module size(*Note 1)	229.46 (W) x 149.1 (H) × 3.4 (D)	mm
Surface treatment	Glare	
Color arrangement	R.G.B-stripe	
Interface	Digital	
View direction	12 O'alaak	
(Gray Inversion)		
Backlight power	TRD	
consumption	שטו	
Panel power	TBD	
consumption	שטו	
Weight	207g	

Note 1: Refer to Mechanical Drawing.

3. ABSOLUTE MAXIMUM RATINGS

ITEM	SVMROI	VALU	JES		DEMARK
	STINDUL	MIN	MAX	UNIT	
	DV_{DD}	-0.3	5.0	V	
	AV_{DD}	6.5	13.5	V	
Power Voltage	V_{GH}	-0.3	42	V	
	V_{GL}	-20	0.3	V	
	V_{GH} - V_{GL}		40	V	
Operation Temperature	Т _{ор}	-20	60	°C	
Storage Temperature	T _{st}	-30	70	°C	
LED Reverse Voltage	V _R		5	V	Each LED Note 2
LED Forward Current	l _F		20	mA	Each LED

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 2: V_R Conditions: Zener Diode 20mA

4. ELECTRICAL SPECIFICATIONS

4.1 Typical Operation Conditions

	CVMDOI		VALUES		DEMADIZ	
IIEIVI	SYMBOL	MIN	TYP.	MAX	UNIT	REMARK
		3.0	3.3	3.6	V	Note 2
	AV_{DD}	10.8	11	11.2	V	
Power Voltage	V_{GH}	19.7	20	20.3	V	
	V_{GL}	-6.5	-6.8	-7.1	V	
Input signal voltage	V _{COM}	3.6	TBD	4.0	V	
Input logic high voltage	V _{IH}	$0.7 DV_{DD}$			V	Note 3
Input logic low voltage	V _{IL}	0		$0.3 DV_{DD}$	V	NOLE 5
	I _{GH}		TBD	TBD	mA	V _{GH} =20V
Current for	I _{GL}		TBD	TBD	mA	V _{GL} = -6.8V
Driver	I _{DVDD}		TBD	TBD	mA	DV _{DD} =3.3V
	I _{AVDD}		TBD	TBD	mA	AV _{DD} =11V
Voltage for LED backlight	VL		9.3	10.2	V	Note 4
Current for LED backlight	ΙL		240	250	mA	
LED life time			20000		Hr	Note 5

(GND=0V, TA=25℃)

Note 1: Be sure to apply DV_{DD} and V_{GL} to the LCD first, and then apply $V_{\text{GH}}.$

Note 2: DV_{DD} setting should match the signals output voltage (refer to Note 3) of customer's system board. Note 3: LVDS, Reset.

Note 4: The LED Supply Voltage is defined by the number of LED at Ta=25 $^\circ\!\!\mathbb{C}$ and I_L =240mA.

Note 5: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and I_L =240mA. The LED lifetime could be decreased if operating I_L is lager than 240mA.

4.2 Power Sequence

b. Power off:

4.3 Timing Characteristics

4.3.1 AC Electrical C	Characteristics
-----------------------	-----------------

	SVMPOL		VALUES		DEMADK	
	STMBOL	MIN	TYP.	MAX	UNIT	REMARK
Clock Frequency	R _{xFCLK}	20	72.4	81	MHz	
Input data skew margin	T _{RSKM}	500			ps	
Clock high time	T _{LVCH}		4/(7* R _{xFCLK})		ns	
Clock low time	T _{LVCL}		3/(7* R _{xFCLK})		ns	

4.3.2. Input Clock and Data Timing Diagram

4.3.3. DC Electrical Characteristics

	SYMPOL	VALUES				
	STIVIDOL	MIN	TYP.	MAX	UNIT	REWARK
Differential input high Threshold voltage	R _{xVTH}			+0.1	V	RXVCM=1.2V
Differential input low Threshold voltage	R _{xVTL}	-0.1			V	
Input voltage range (singled-end)	R _{xVIN}	0		V _{DD} -1.2+ V _{ID} /2	V	
Differential input common mode voltage	R _{xVCM}	V _{ID} /2		V _{DD} -1.2	V	
Differential voltage	[V _{ID}]	0.2		0.6	V	
Differential input leakage current	RV _{xliz}	-10		+10	μA	
LVDS digital Operating Current	I _{ddlvds}		TBD	TBD	mA	F _{clk} =81MHz , V _{DD} =3.3V
LVDS digital	Istivds		TBD	TBD	μA	Clock & all Functions
Standby Current						are stopped

4.3.4 Timing Table

			VALUES			
	STNIDUL	MIN	TYP.	MAX	UNIT	REWARK
Clock Frequency	f _{clk}	66.6	72.4	78.9	MHz	Frame rate =60Hz
Horizontal display area	t _{HD}		1280			
HS period time	t _H	1370	1440	1500	DCLK	
HS Blanking	t _{HB}	90	160	220	DCLK	
Vertical display area	t _{VD}		800		Н	
VS period time	tv	810	838	877	Н	
VS Blanking	t _{VB}	10	38	77	Н	

4.3.5. Data Input Format

5. INTERFACE

FPC Connector is used for the module electronics interface. The model is F62240-H1210A manufactured by Vigorconn.

Pin No.	Symbol	I/O	Function	Remark
1	VCOM	Р	Common Voltage	1 T T
2	VDD	Р	Power Voltage for digital circuit	
3	VDD	Р	Power Voltage for digital circuit	
4	NC		No connection	
5	Reset	I.	Global reset pin	
6	STBYB	I	Standby mode, Normally pulled high STBYB = "1", normal operation STBYB = "0", timing controller, source driver will turn off, all output are High-Z	
7	GND	Р	Ground	
8	RXIN0-	Č.	- LVDS differential data input	
9	RXIN0+	1	+ LVDS differential data input	
10	GND	Р	Ground	
11	RXIN1-	<u>ا</u> (- LVDS differential data input	
12	RXIN1+	I	+ LVDS differential data input	
13	GND	Р	Ground	
14	RXIN2-	I	- LVDS differential data input	
15	RXIN2+	I	+ LVDS differential data input	
16	GND	Р	Ground	
17	RXCLKIN-	I	- LVDS differential clock input	
18	RXCLKIN+	I	+ LVDS differential clock input	
19	GND	Ρ	Ground	
20	RXIN3-	I	- LVDS differential data input	
21	RXIN3+	I.	+ LVDS differential data input	
22	GND	Р	Ground	
23	NC		No connection	
24	NC		No connection	

GND	Р	Ground	
NC		No connection	
DIMO	0	Backlight CABC controller signal output	
SELB	1	6bit/8bit mode select	Note1
AVDD	Р	Power for Analog Circuit	1
GND	Р	Ground	
LED-	Р	LED Cathode	
LED-	Р	LED Cathode	
L/R	1	Horizontal inversion	Note3
U/D	1	Vertical inversion	Note3
VGL	Р	Gate OFF Voltage	
CABCEN1	1	CABC H/W enable	Note2
CABCEN0	1	CABC H/W enable	Note2
VGH	Р	Gate ON Voltage	
LED+	Р	LED Anode	
LED+	P	LED Anode	
	GND NC DIMO SELB AVDD GND LED- LED- U/D VGL CABCEN1 CABCEN1 CABCEN0 VGH LED+	GND P NC DIMO O SELB I AVDD P GND P GND P LED- P LED- P U/D I VGL P CABCEN1 I VGH P LED+ P LED+ P	GNDPGroundNCNo connectionDIMOOBacklight CABC controller signal outputSELBI6bit/8bit mode selectAVDDPPower for Analog CircuitGNDPGroundLED-PLED CathodeLED-PLED CathodeLVRIHorizontal inversionV/DIVertical inversionVGLPGate OFF VoltageCABCEN1ICABC H/W enableCABCEN0ICABC H/W enableVGHPLED AnodeLED+PLED AnodeLED+PLED Anode

I: input, O: output, P: Power

Note1: If LVDS input data is 6 bits, SELB must be set to High; If LVDS input data is 8 bits,

SELB must be set to Low.

Note2: When CABC_EN="00", CABC OFF.

When CABC_EN="01", user interface image.

When CABC_EN="10", still picture.

When CABC_EN="11", moving image.

When CABC off, don't connect DIMO, else connect it to backlight.

Note3: When L/R="0", set right to left scan direction.

When L/R="1", set left to right scan direction.

When U/D="0", set top to bottom scan direction.

When U/D="1", set bottom to top scan direction.

Note: Definition of scanning direction.

Refer to the figure as below:

6. OPTICAL CHARACTERISTICS

Itom	Symbol	Condition	Values			Unit	Domark
nem		Condition	Min.	тур.	Max.	Unit	Remark
Viewing angle (CR≥ 10)	θι	Φ=180°(9 o'clock)	65	75	-	degree	Note 1
	θ _R	Φ=0°(3 o'clock)	65	75	-		
	θτ	Φ=90°(12 o'clock)	65	75	-		
	θΒ	Φ=270°(6 o'clock) 60		70	-		
Response time	T _{ON}		-	10	20	msec	Note 3
	T _{OFF}	1. A A	- ¹ -	15	30	msec	Note 3
Contrast ratio	CR		500	700		-	Note 4
Color chromaticity	Wx	Normal θ=Φ=0°	0.26	0.31	0.36	-	Note 2
	W _Y		0.28	0.33	0.38	-	Note 5 Note 6
Luminance	L		200	250	-	cd/m²	Note 6
Luminance uniformity	Yu		70	75	-	%	Note 7

Test Conditions:

1. VDD=3.3V, IL=240mA (Backlight current), the ambient temperature is 25° C.

2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

Fig. 6-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 6-3 Definition of response time

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_L =240mA.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 6-4).

Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 6-4 Definition of measuring points

 $B_{\mbox{\scriptsize max}}$: The measured maximum luminance of all measurement position.

 $B_{\mbox{\scriptsize min}}$: The measured minimum luminance of all measurement position.

7. RELIABILITY TEST CONDITIONS

Item	Test Conditions	Note
High Temperature Storage	Ta = 60°C 240 hrs	Note 1,Note 4
Low Temperature Storage	Ta = -20°C 240 hrs	Note 1,Note 4
High Temperature Operation	Ts = 50°C 240 hrs	Note 2,Note 4
Low Temperature Operation	Ts = -10°C 240 hrs	Note 1,Note 4
High Temperature and High Humidity (operation)	Ta = +40℃, 90%RH 240 hrs	Note 4
Thermal Cycling Test (non operation)	-10°C (30min) → +50°C (30min), 100cycles, Start with cold temperature and end with high temperature.	Note 4
Vibration	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X. Y. Z. (6 hours for total)	
Mechanical Shock	100G 6ms,±X, ±Y, ±Z 3 times for each direction	
Electro Static Discharge	± 2KV, Human Body Mode, 100pF/1500Ω	

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

8. Inspection Specifications

8-1 Scope

Specifications contain

- 8-1-1 Display Quality Evaluation
- 8-1-2 Mechanics Specification

8-2 Sampling Plan

Unless there is other agreement, the sampling plan for incoming inspection shall follow MIL-STD-105E LEVEL II.

- 8-2-1 Lot size: Quantity per shipment as one lot (different model as different lot).
- 8-2-2 Sampling type: Normal inspection, single sampling.
- 8-2-3 Sampling level: Level II.
- 8-2-4 AQL: Acceptable Quality Level

Major defect: AQL=0.65

Minor defect: AQL=1.0

8-3 Panel Inspection Condition

8-3-1 Environment:

Room Temperature: 25±5°C.

Humidity: 65±5% RH.

Illumination: 300 ~ 700 Lux.

8-3-2 Inspection Distance:

35-40 cm

8-3-3 Inspection Angle:

The vision of inspector should be perpendicular to the surface of the Module.

8-3-4 Inspection time :

Perceptibility Test Time: 20 seconds max.

8-4 Display Quality

8-4-1 Function Related:

The function defects of line defect, abnormal display, and no display are considered Major defects.

Defect Type / Specification	G0 Grade	A Grade			
Bright Dots	0	N≤ 3			
Dark Dots	0	N≤ 4			
Total Bright and Dark Dots	0	N≤ 6			

8-4-2 Bright/Dark Dots:

[Note 1] Judge defect dot and adjacent dot as follows:

- (1) One pixel consists of 3 sub-pixels, including R,G, and B dot.(Sub-pixel = Dot)
- (2) The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.
- (3) Allow above (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.
- (4) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.
- (5) There should be no distinct non-uniformity visible through 3% ND Filter within 2 sec inspection times.

Defect Type	Specification	Count(N)
Dot Shape	D≤0.25mm	Ignored
(Particle、Scratch and Bubbles in	0.25mm < D≤ 0.5mm	N≤ 3
display area)	D > 0.5mm	N=0
Line Shape	W≤ 0.07mm	Ignored
(Particles、Scratch、Lint and	0.07mm <w<math>\leq 0.1mm , L\leq 5mm</w<math>	N≤ 3
Bubbles in display area)	W > 0.1mm , L > 5mm	N=0

8-4-3 Visual Inspection specifications:

[Note 2]: Width [mm], L: Length [mm], N: Number, φ: Average Diameter

[Note 3] Bright dot is defined through 3% transmission ND Filter as following.

9. GENERAL PRECAUTION

9.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

9.2 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. AMPIRE does not warrant the module, if customers disassemble or modify the module.

9.3 Breakage of LCD Panel

- (1) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- (2) If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- (3) If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- (4) Handle carefully with chips of glass that may cause injury, when the glass is broken.

9.4 Electric Shock

- (1) Disconnect power supply before handling LCD module.
- (2) Do not pull or fold the LED cable.
- (3) Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

9.5 Absolute Maximum Ratings and Power Protection Circuit

- (1) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- (2) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (3) It's recommended to employ protection circuit for power supply.

9.6 Operation

- (1) Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- (2) Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- (3) When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- (4) Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may cause deformation or color fading.
- (5) When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzene or other adequate solvent.

9.7 Mechanism

Please mount LCD module by using mounting holes arranged in four corners tightly.

9.8 Static Electricity

- (1) Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- (2) Because LCD modules use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

9.9 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

9.10 Disposal

When disposing LCD module, obey the local environmental regulations.

9.11 Others

AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

10. OUTLINE DIMENSION

Date : 2012/5/29

Date : 2012/5/29