

企业QQ:800009921 郑生: 18948314942 邮箱: bsbdt2@163.com

MH284 Specifications Low Sensitivity Unipolar Hall Effect Switch

MH284 is an unipolar Hall effect switch IC. It is includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, Schmitt trigger and open-collector output. This design, specifications and performance have been optimized for applications of solid state switches.

The output transistor will be switched on (Bop) in the presence of a sufficiently strong South pole magnetic field facing the marked side of the package. Similarly, the output will be switched off (BRP) in the presence of a weaker South field or removing the magnetic field.

The package type is in a Halogen Free version was verified by third party organization.

Features and Benefits

- Solid-State Reliability.
- Excellent Temperature Stability.
- Reverse bias protection on power supply pin.
- Unipolar, output switches with absolute value of South pole from magnet.
- Wide operating voltage from 4.5V to 30V.
- High Peak Voltage of 65V.
- 100% tested at 125°C for K Spec.
- Custom sensitivity / Temperature selection are available.

Applications

- Solid-State switch.
- Interrupter.
- High temperature Fan motor.
- 3 phase BLDC motor application.
- E-Bike.
- Speed sensing.
- Revolution counting.
- Replacement for reed switch.

Ordering Information

MH284 SpecificationsLow Sensitivity Unipolar Hall Effect Switch

Part No.	Temperature Suffix	Package Type
MH284KUA	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	UA (TO-92S)
MH284KSO	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	SO (SOT-23)
MH284EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)
MH284ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At $(Ta=25 \ C)$

Absolute Maximum Ratings At (1a=25 ()								
Characteristics			Values	Unit				
Supply voltage,(Vcc)			65	V				
Output Voltage,(Vovr)			65	V				
Reverse Voltage, (Vcc)			-32	V				
Magnetic flux density			Unlimited	Gauss				
Output current , (Iovr)			25	mA				
O	(T.)	"E" version	-40 to +85	°C				
Operating Temperature Range, (<i>Ta</i>)		"K" version	-40 to +125	$^{\circ}\! \mathbb{C}$				
Storage temperature range, (Ts)			-55 to +150	°C				
Maximum Junction Temp,(<i>Tj</i>)			150	$^{\circ}\! \mathbb{C}$				
m in in	(θ)	ia) UA / SO	206 / 543	°C/W				
Thermal Resistance	$(heta_{jc})~ ext{UA} / ext{SO}$		148 / 410	°C/W				
Package Power Dissipation, (P_D) UA/SO		606 / 230	mW					

 $\textbf{Note: Do not apply reverse voltage to V_{CC} and V_{OUT} Pin, It may be caused for Miss function or damaged device.}$

MH284 Specifications Low Sensitivity Unipolar Hall Effect Switch

Electrical Specifications

DC Operating Parameters : $T_A=+25 \, \text{C}$, $V_{CC}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(Vcc)	Operating	4.5		30.0	V
Supply Current,(Icc)	B <b<sub>OP</b<sub>		3.0	8.0	mA
Output Saturation Voltage ,(V _{Sat})	IOUT = 10 mA, B>BOP			500.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="20V</td"><td></td><td></td><td>10.0</td><td>uA</td></brp,>			10.0	uA
Output Rise Time, (T _R)	$RL=1k\Omega$, $CL=20pF$		1.5		uS
Output Fall Time, (T_F)	RL=1k Ω ; CL=20pF		1.5		uS
Operate Point,(BoP)				175	Gauss
Release Point, (B_{RP})		20			Gauss
Hysteresis,(BHYS)			30		Gauss

Typical application circuit

C1: 1000PF

C2: 15PF

 $R2:10K\Omega$

Specifications *MH284* Low Sensitivity Unipolar Hall Effect Switch

Sensor Location, Package Dimension and Marking MH284 Package

UA Package

NOTES:

- 1). Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1 Vcc

Pin 2 **GND**

Pin 3 Output

Hall Chip location

Output Pin Assignment (Top view)

Package (SOT-23) (Top View)

Hall Plate Chip Location (Bottom view)

NOTES:

1. PINOUT (See Top View at left :)

Pin 1 V_{CC}

Pin 2 Output

Pin 3 **GND**

- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum