

MH250 Hall-effect sensor is a temperature stable, stress-resistant, Low Tolerance of Sensitivity micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH250 is special made for low operation voltage, 1.7V, to active the chip which is includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries. This device requires the presence of omni-polar magnetic fields for operation.

MH250 is rated for operation between the ambient temperatures -40°C and +85°C for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), ST is an TSOT-23(0.8 mm nominal height),SQ is an QFN2020-3(0.55 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

The package type is in a Halogen Free version has been verified by third party Lab.

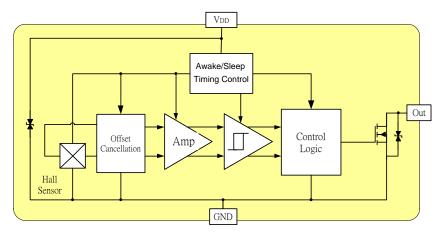
Features and Benefits

- CMOS Hall IC Technology
- MST patented RF noise protection
- 1.7 to 3.5V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.7V, Micro power consumption
- High Sensitivity for direct reed switch replacement applications
- Low sensitivity drift in crossing of Temp. range
- Ultra Low power consumption at 3uA (Avg)
- Green chip is qualified by third party lab.
- High ESD Protection, HBM> ± 4 KV(min)

Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Floating Meter
- PDVD
- NB

MH250 Specifications Low Switch Point Drift & High Sensitivity Micropower Hall Effect Switch


Ordering Information

XXXXXXXXX - X	Company Name and Product Category MH:MST Hall Effect/MP:MST Power MOSFET	
Sorting Code	Part number 181,182,183,184,185,248,249,276,477,381,381F,381R,382 If part # is just 3 digits, the forth digit will be omitted. Temperature range	
Temperature Code Temperature Code Part number Company Name and Product Category	E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C Package type UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23, SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin)	
	Sorting α,β,Blank	

Part No.	Temperature Suffix	Package Type	
MH250EUA	E $(-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)	
MH250ESO	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	S0 (SOT-23)	
MH250EST	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	ST (TS0T-23)	
MH250ESQ	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	SQ (QFN2020-3)	

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{DD} is recommended. *MH250, HBM* > ±4KV which is verified by third party lab.

MH250 Specifications Low Switch Point Drift & High Sensitivity Micropower Hall Effect Switch

Absolute Maximum Ratings At (Ta=25 °C)

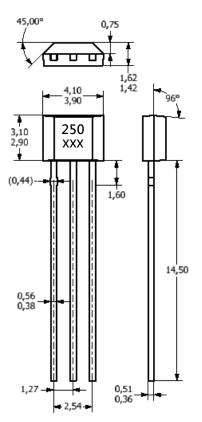
Characteristics		Values	Unit	
Supply voltage,(VDD)		7	V	
Output Voltage,(Vout)		6	V	
Reverse voltage, (VDD) (VOUT)		-0.3	V	
Magnetic flux density		Unlimited	Gauss	
Output current(<i>Iour</i>)		5	mA	
Operating temperature range, (<i>Ta</i>)		-40 to +85	°C	
Storage temperature range, (<i>Ts</i>)		-65 to +150	°C	
Maximum Junction Temp,(<i>Tj</i>)		150	°C	
Thermal Resistance	(θ_{JA}) UA / SO / ST / SQ	206 / 543 / 310 / 543	°C/W	
	(θ_{JC}) UA / SO / ST / SQ	148 / 410 / 223 /410	°C/W	
Package Power Dissipation, (P_D) UA / SO / ST / SQ		606 / 230 / 400 / 230	mW	

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods may affect device reliability.

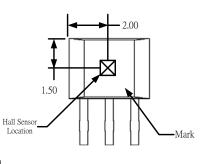
Electrical Specifications

DC Operating Parameters : Ta=25 °C, VDD=1.8V

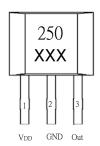
Paramete	rs	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDL)	Operating	1.7		3.5	V
Supply Current,(<i>I</i> _{DD})		Awake State		0.9		mA
		Sleep State		1.6		μΑ
		Average		2.3		μΑ
Output Leakage Cur	rrent,(Ioff)	Output off			1	uA
Output Low Voltage	$e,(V_{sat})$	Iout=1mA			0.2	V
Awake mode time,(2	Taw)	Operating		70		uS
Sleep mode time,(T	sL)	Operating		100		mS
Duty Cycle,(<i>D</i> , <i>C</i>)				0.07		%
Electro-Static Disch	arge	НВМ	4			KV
Operate Point,	(Bops)	S pole to branded side, B > BOP, Vout On		30	40	Gauss
	(BOPN)	N pole to branded side, B > BOP, Vout On	-40	-30		
Release Point	(B_{RPS})	S pole to branded side, B < BRP, Vout Off	20	25		Gauss
	(BRPN)	N pole to branded side, B < BRP, Vout Off		-25	-20	
Hysteresis, (BHYS)		BOPx - BRPx		5		Gauss


Typical Application circuit

C1 : 10nF C2 : 100pF R1 : 100KΩ


Sensor Location, Package Dimension and Marking MH250 Package

UA Package


NOTES:

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:
- Pin 1 VDD
- Pin 2GNDPin 3Output

Hall Chip location

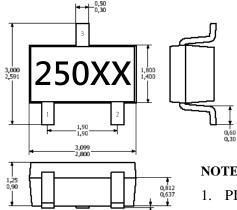
Output Pin Assignment (Top view)

Hall Senso Location

Hall Plate Chip Location

(Bottom view)

3

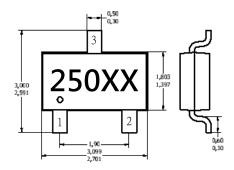

0.80

1.45

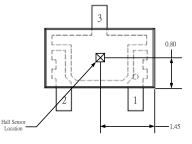
1

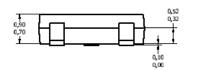
SO Package

(Top View)


0,15 0,00

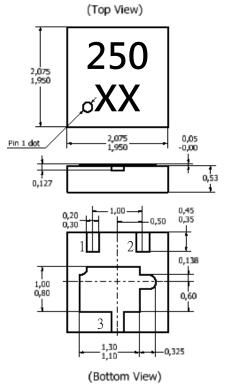
NOTES:


- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 **GND**
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

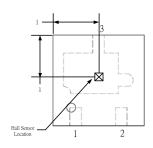

ST Package (TSOT-23)

(Top View)

Hall Plate Chip Location (Bottom view)


NOTES:

- PINOUT (See Top View at left:) 1.
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm;


MH250 Specifications Low Switch Point Drift &High Sensitivity Micropower Hall Effect Switch

SQ Package

- NOTES:
- 3. PINOUT (See Top View
 - at left)
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- Controlling dimension: mm;
- Chip rubbing will be 10mil maximum;
- Chip must be in PKG. center.

Hall Plate Chip Location (Top view)

