MH253 Hall-effect sensor is a temperature stable, stress-resistant switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH253 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

MH253 is rated for operation between the ambient temperatures -40° C and $+85^{\circ}$ C for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SQ is an QFN2020-3(0.55 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

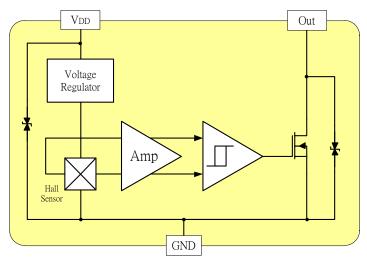
The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits

- CMOS Hall IC Technology
- Solid-State Reliability much better than reed switch
- Omni polar output switches with absolute value of North or South pole from magnet
- Low power consumption(2.6mA)
- High Sensitivity for reed switch replacement
- 100% tested at 125° C for K.
- Small Size
- ESD HBM ±4KV Min
- COST competitive

Applications

- Solid state switch
- Lid close sensor for power supply devices
- Magnet proximity sensor for reed switch replacement in high duty cycle applications.
- Safety Key on sporting equipment
- Revolution counter
- Speed sensor
- Position Sensor
- Rotation Sensor
- Safety Key


Ordering Information

XXXXXXXXX - X	Company Name and Product Category MH:MST Hall Effect/MP:MST Power IC
Company Name and Product Category	MIR:MS1 Han Elect/MP:MS1 Power IC Part number 181,182,183,184,185,248,249,276,477,381,381F,381R,382 If part # is just 3 digits, the forth digit will be omitted. Temperature range E: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C Package type UA:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23, SQ:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin), SS:TSOT-26,SD:DFN-6,SG:SOT-89(3pin) Sorting α , β ,Blank

Part No.	Temperature Suffix	Package Type	
MH253KUA	K $(-40^{\circ}C \text{ to } + 125^{\circ}C)$	UA (TO-92S)	
MH253EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)	
MH253ESO	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	S0 (SOT-23)	
MH253ESQ	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	SQ (QFN2020-3)	

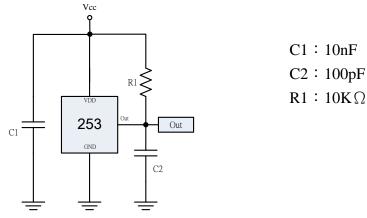
Custom sensitivity selection is available by MST sorting technology

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings At (Ta=25 °C)

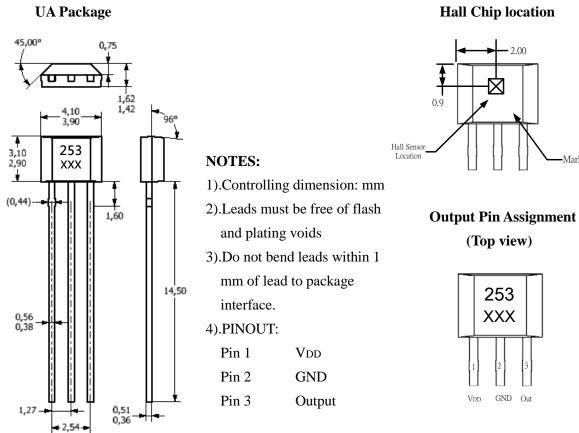
Characteristics			Values	Unit
Supply voltage,(VDD)			7	V
Output Voltage,(Vout)			6	V
Reverse voltage, (VDD) (VOUT)			-0.3	V
Magnetic flux density			Unlimited	Gauss
Output current,(<i>Iour</i>)			25	mA
Operating Temperature Range, (Ta)		"E" version	-40 to +85	°C
		"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)			-55 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)			150	°C
Thermal Resistance	$(heta_{\scriptscriptstyle JA})$ UA / SO / SQ		206 / 543 / 543	°C/W
	$(heta_{\scriptscriptstyle JC})$ UA / SO / SQ		148 / 410 /410	°C/W
Package Power Dissipation, (P_D) UA / SO / SQ			606 / 230 / 230	mW


Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

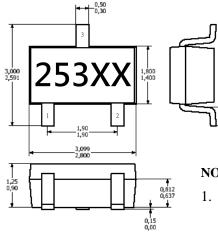
Electrical Specifications

DC Operating Parameters $T_A=+25$ °C, $V_{DD}=5.0V$

Parameters		Test Conditions	Min	Тур	Max	Units	
Supply Voltage,(V _{DD})		Operating	2.5		6	V	
Supply Current,(<i>I</i> _{DD})		Average		2.6	6.0	mA	
Output Low Voltage, (VDSON)		Iout=10mA			400	mV	
Output Leakage Cur	rrent,(Ioff)	IOFF B <brp, vout="5V</td"><td></td><td></td><td>10</td><td>uA</td></brp,>			10	uA	
Output Rise Time,(<i>T</i> _R)		RL=10k Ω , CL =20pF			0.45	uS	
Output Fall Time,(TF)		RL=10k Ω ; CL =20pF			0.45	uS	
Electro-Static Discharge		НВМ	4			KV	
Operate Point,	(Bops)	S pole to branded side, B > BOP, Vout On		30	60	Gauss	
	(BOPN)	N pole to branded side, B > BOP, Vout On	-60	-30			
Release Point	(B_{RPS})	S pole to branded side, B < BRP, Vout Off	5	25		Gauss	
	(BRPN)	N pole to branded side, B < BRP, Vout Off		-25	-5	Gauss	
Hysteresis, (BHYS)		BOPx - BRPx		5		Gauss	


Typical Application circuit

091713



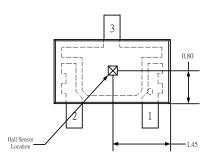
Sensor Location, Package Dimension and Marking MH253 Package

SO Package

(Top View)

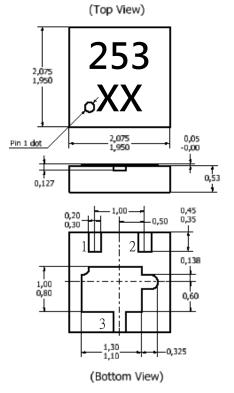
NOTES:

0,60 0,30

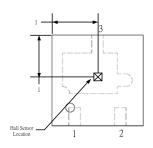

PINOUT (See Top View at left :) 1.

Pin 1 V_{DD}

- Pin 2 Output
- Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum


Hall Plate Chip Location (Bottom view)

Mark



SQ Package

- NOTES:
- 1. PINOUT (See Top View
 - at left)
 - Pin 1 VDD
 - Pin 2 Output
 - Pin 3 GND
- Controlling dimension: mm;
- Chip rubbing will be 10mil maximum;
- 4. Chip must be in PKG. center.

Hall Plate Chip Location (Top view)

