

MH187 Hall-effect sensor is a temperature stable, stress-resistant latch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH187 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, ESD circuit protection, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

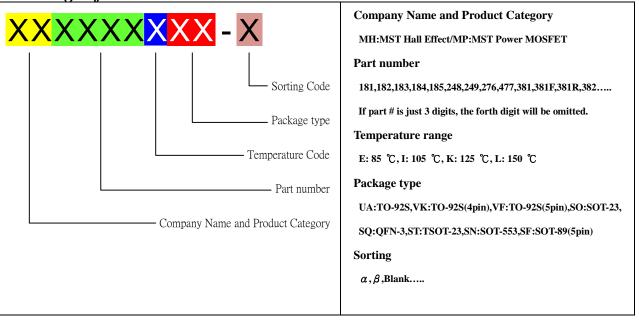
This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output latches on, and only switches off when a north polarity field of sufficient strength is present.

MH187 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The three package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SQ is an QFN2020-3(0.5 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

The UA package SO type and SQ type are Halogen Free package. All of them have been verified by third party Lab.

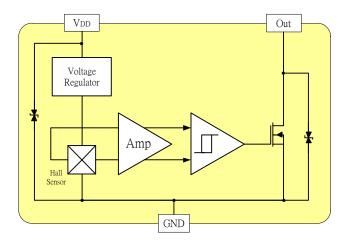
Features and Benefits

- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- Reliable and low shifting on high Temp condition
- Good ESD Protection
- 100% tested at 125 °C for K.
- 100% tested at 150 °C for L.
- Custom sensitivity / Temperature selection are available.


Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

091212 Page 1 of 5 Rev. 1.02


Ordering Information

Part No.	Temperature Suffix	Package Type
MH187LUA	L (-40° C to + 150° C)	UA (TO-92S)
MH187KUA	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	UA (TO-92S)
MH187KSO	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	SO (SOT-23)
MH187KSQ	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	SQ (QFN2020-3)
MH187EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)
MH187ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)
MH187ESQ	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SQ (QFN2020-3)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

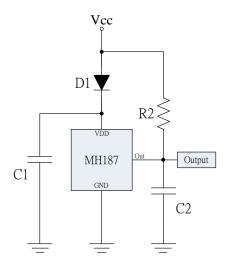
Functional Diagram

.

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit	
Supply voltage, (VDD)			28	V	
Output Voltage,(Vout)			28	V	
Reverse voltage, (VDD) (VOUT)			-0.3	V	
Magnetic flux density			Unlimited	Gauss	
Output current, (Iovr)			50	mA	
	"E" version		-40 to +85	°C	
Operating Temperature Range, (Ta)		"K" version	-40 to +125	°C	
		"L" version	-40 to +150	$^{\circ}$ C	
Storage temperature range, (Ts)			-65 to +175	°C	
Maximum Junction Temp,(<i>Tj</i>)			175	°C	
TI ID '	(θ_{ja}) UA / SO / SQ		206 / 543 / 543	°C/W	
Thermal Resistance	$(heta_{jc})~ ext{UA} / ext{SO} / ext{SQ}$		148 / 410 / 410	°C/W	
Package Power Dissipation, (P_D) UA / SO / SQ			728 / 543 / 543	mW	

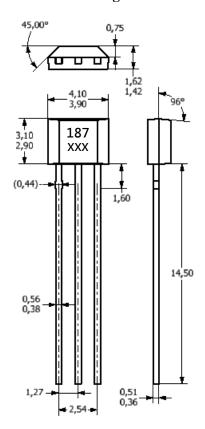
 $\textit{Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.}$


Electrical Specifications

DC Operating Parameters : $T_A=+25 \, \text{C}$, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	3.0		26.0	V
Supply Current,(<i>I</i> _{DD})	B <b<sub>OP</b<sub>			5.0	mA
Output Saturation Voltage, (Vsat)	IOUT = 10 mA, B>BOP			400.0	mV
Output Leakage Current, (Ioff)	IOFF $B < B_{RP}$, $V_{OUT} = 12V$			15.0	uA
Output Rise Time, (T _R)	RL=820Ω, CL=20pF			0.45	uS
Output Fall Time, (T_F)	RL=820 Ω ; CL=20pF			0.45	uS
Electro-Static Discharge	НВМ	4			KV
Operate Point,(BoP)		15		60	Gauss
Release Point,(BRP)		-60		-15	Gauss
Hysteresis,(BHYS)			80		Gauss

Typical application circuit

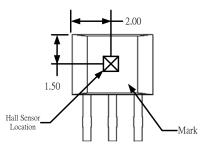


D1: 1N4148 or 100 Ω

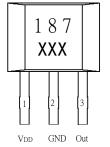
C1: 1000PF C2: 15PF R2: $10K\Omega$

Sensor Location, package dimension and marking MH187 Package

UA Package

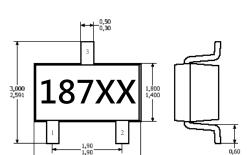


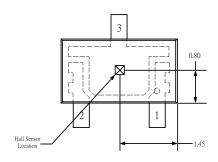
NOTES:


- 1).Controlling dimension: mm
- Leads must be free of flash and plating voids
- Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1 VDD
Pin 2 GND
Pin 3 Output

Hall Chip location


Output Pin Assignment (Top view)



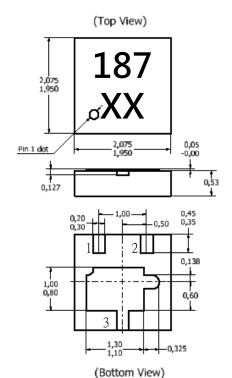
SO Package

(Top View)

Hall Plate Chip Location (Bottom view)

NOTES:

1. PINOUT (See Top View at left :)


 $Pin \ 1 \qquad V_{DD}$

Pin 2 Output

Pin 3 GND

- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

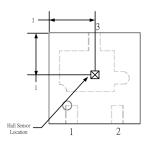
SQ Package

NOTES:

PINOUT (See Top View at left)

Pin 1 VDD

Pin 2 Output


Pin 3 GND

2. Controlling dimension:

mm;

- 3. Chip rubbing will be 10mil maximum;
- 4. Chip must be in PKG. center.

Hall Plate Chip Location (Top view)

