

www.ti.com

Rambus™ XDR™ CLOCK GENERATOR

FEATURES

- High-Speed Clock Support: 300-MHz-667-MHz Clock Source for XDR Memory Subsystems and Redwood Logic Interface
- Quad (Open-Drain) Differential Output Drivers
- Spread-Spectrum Compatible Clock Input Can Be Distributed to Minimize EMI
- Differential or Single-Ended Reference Clock Input of 100 MHz or 133 MHz
- Serial Interface Features: Programmable Frequency Multiplier, Select Any One to Four Outputs and Mode of Operation
- Supports Frequency Multiplication Factors of:
 ×3, ×4, ×5, ×6, ×8, ×9/2, ×15/2, ×15/4
- All PLL Loop Filter Components Are Integrated
- Low |Cycle-to-Cycle| of 1–6 Cycle Jitter:

40 ps: 300–635 MHz

- 30 ps: 636-667 MHz

- PLLs Are Powered Down if No Valid REF Clock (<10 MHz) Is Detected or VDD Is Below 1 6 V
- Operates From Single 2.5-V Supply (±0.125 V)
- Packaged in TSSOP-28
- Commercial Temperature Range 0°C to 70°C

APPLICATIONS

 XDR Memory Subsystem and Redwood Logic Interface

DESCRIPTION

The CDCD5704 clock generator provides the necessary clock signals to support an XDR memory subsystem and Redwood logic interface using a reference clock input with or without spread-spectrum modulation. Contained in a 28-pin TSSOP package that includes four differential clock outputs, the CDCD5704 provides an off-the-shelf solution for a broad range of high-performance interface applications.

The block diagram shows the major components of the CDCD5704, which include a phase-locked loop, a bypass multiplexer, and four differential output buffers (CLK0 to CLK3). All four outputs can be disabled by a logical low at the input of the EN pin. An output is enabled when EN is high and a value of 1 is in its serial interface register (RegA–RegD).

The PLL receives a reference clock input signal, REFCLK, and outputs a clock signal at a frequency equal to the input frequency times the multiplication factor. The PLL output clock signal is fed to the differential output buffers to drive the enabled clocks. Disabled outputs are set to high impedance.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

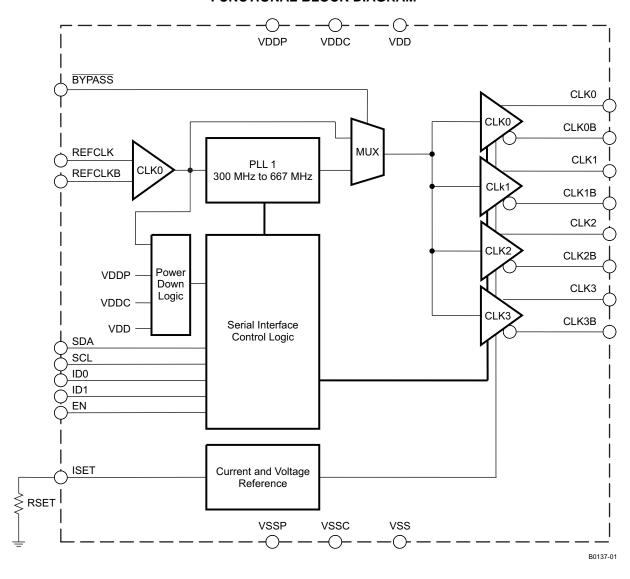
Rambus, XDR are trademarks of Rambus Inc.

All other trademarks are the property of their respective owners.

(TOP VIEW) VDDP □ 10 28 VSSP □□ 2 27 ☐ CLK0 26 3 □ CLK0B ISET \Box VSS □ 25 → VSS REFCLK ___ CLK1 24 REFCLKB \Box CLK1B 23 6 22 VDDC □□ VSSC □□ 8 21 20 CLK2 SCL ___ 9 SDA 🖂 10 19 CLK2B EN \Box 11 18 T VSS ID0 I 12 ☐ CLK3 17. ☐ CLK3B ID1 \square 13 16 BYPASS \square VDD 14 15

PW PACKAGE

P0043-01


The bypass mode routes the input clock REFCLK to the differential output buffers, bypassing the PLL.

To ensure that the CDCD5704 clock generator always performs correctly, the device switches off the PLL and the outputs are in the high-impedance state, once the clock input is below 10 MHz. If the supply voltage VDD is less than V_{PUC} , all logic gates are reset, the PLL is powered down, and the outputs are in the high-impedance state. Therefore, the device only starts its operation if these minimum requirements are met.

Because the CDCD5704 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the PLL. With use of an external reference clock, this signal must be fixed-frequency and fixed-phase prior to the start of stabilization time.

The device operates from a single 2.5-V supply voltage. The CDCD5704 device is characterized for operation from 0° C to 70° C.

FUNCTIONAL BLOCK DIAGRAM

Table 1. TERMINAL FUNCTIONS

TERMINAL		TVD=	DECODITION
NAME	NO.	TYPE	DESCRIPTION
BYPASS	14	Input	If 0, the PLL is bypassed and the PLL is switched off.
CLK0	27	Output	Output for Clock0
CLK0B	26	Output	Complementary output for Clock0
CLK1	24	Output	Output for Clock1
CLK1B	23	Output	Complementary output for Clock1
CLK2	20	Output	Output for Clock2
CLK2B	19	Output	Complementary output for Clock2
CLK3	17	Output	Output for Clock3
CLK3B	16	Output	Complementary output for Clock3
EN	11	Input	Output enable; if 0, all outputs are disabled.
ID0	12	Input	Device ID, bit 0
ID1	13	Input	Device ID, bit 1
ISET	3	Output	Set clock driver current with external resistor
REFCLK	5	Input	Reference clock input
REFCLKB	6	Input	Complementary reference clock input
SCL	9	Input	Serial interface clock, 3.3-V compatible
SDA	10	Input	Serial interface data, 3.3-V compatible
VDD	15, 22, 28	Power	2.5-V power supply for outputs
VDDC	7	Power	2.5-V power supply for core
VDDP	1	Power	2.5-V power supply for PLL
VSS	4, 18, 21, 25	Ground	Ground
VSSC	8	Ground	Ground for core
VSSP	2	Ground	Ground for PLL

SERIAL INTERFACE

The following section describes the serial interface programming. In general, the serial interface slave supports byte-write/-read and word-write/-read protocol as defined in the SMBus or I²C specification.

Serial Interface Operation Requirement

The internal timing of the serial interface logic block in the CDCD5704 requires a timing reference derived from the input clock (REFCLK). A reference clock must be present at the REFCLK pin for the serial interface to be operational.

Serial Interface Device Address

Ī	A6	A5	A4	А3	A2	A1	A0	W/R
	1	1	0	1	1	ID1	ID0	0/1

The device-ID is determined by the external pins ID0 and ID1. They are part of the device 8-bit address. Therefore, four different devices (00, 01, 10, and 11) can be addressed via the same serial interface. The least significant bit of the address designates a write or read operation.

R/W Bit:

0 = write to CDCD5704 device

1 = read from CDCD5704 device

Command Code Definition

Bit	Description					
C7	1 = byte-write/-read or word-write/-read operation					
(C6:C0)	Byte offset for byte-write/-read or word-write/-read operation					

Command Code for Byte-Write/-Read Operation	Hex Code	C7	C6	C5	C4	С3	C2	C1	C0
Byte 0	80h	1	0	0	0	0	0	0	0
Byte 1	81h	1	0	0	0	0	0	0	1
Byte 2	82h	1	0	0	0	0	0	1	0

Command Code for Word-Write/-Read Operation	Hex Code	C7	C6	C5	C4	C3	C2	C1	C0
Word 0: Byte 0 and byte 1	80h	1	0	0	0	0	0	0	0
Word 1: Byte 1 and byte 2	81h	1	0	0	0	0	0	0	1

Serial Interface Generic Programming Sequence

1	7	1	1	8	1	1
S	Slave Address	Wr	Α	Data Byte	Α	Р

S Start Condition

Sr Repeated Start Condition

Rd Read (Bit Value = 1)

Wr Write (Bit Value = 0)

A Acknowledge (ACK = 0 and NACK = 1)

P Stop Condition

PE Packet Error

Master-to-Slave Transmission

Slave-to-Master Transmission

M0053-01

Byte-Write Programming Sequence

1	7	1	1	8	1	8	1	1
S	Slave Address	Wr	Α	Command Code	Α	Data Byte	Α	Р

Byte-Read Programming Sequence

1	7	1	1	8	1	1	7	1	1
S	Slave Address	Wr	Α	Command Code	Α	S	Slave Address	Rd	Α

	8	1	1	
Ī	 Data Byte	Α	Р	
		1		

4

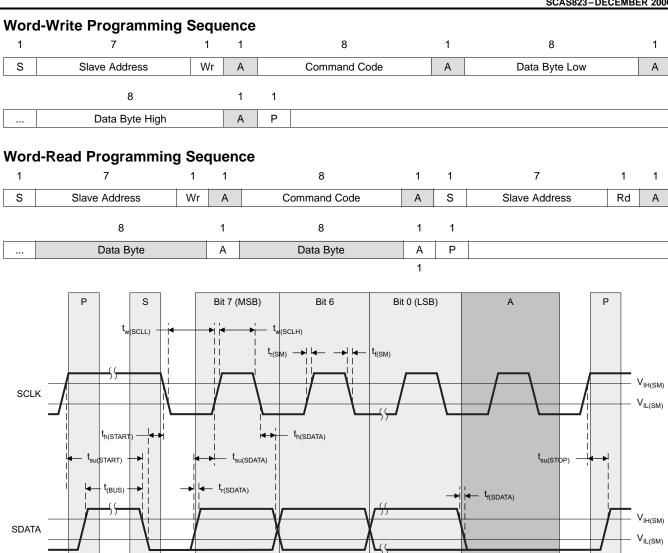


Figure 1. Timing Diagram, Serial Control Interface

T0131-01

Serial Interface Configuration Command Bitmap

Byte 0

Bit	Bit Name	Description/Function	Туре	Power-Up Condition
7	RES	Reserved	R/W	0
6	MULT2	Multiplication factor, bit 2	R/W	0
5	MULT1	Multiplication factor, bit 1	R/W	0
4	MULT0	Multiplication factor, bit 0	R/W	1
3	RegA	Enable CLK0	R/W	1
2	RegB	Enable CLK1	R/W	1
1	RegC	Enable CLK2	R/W	1
0	RegD	Enable CLK3	R/W	1

Byte 1

Bit	Bit Name	Description/Function	Type	Power-Up Condition
7	RES	Reserved	R/W	0
6	RES	Reserved	R/W	0
5	RES	Reserved	R/W	0
4	RES	Reserved	R/W	0
3	RES	Reserved for vendor option	R/W	0
2	RES	Reserved for vendor option	R/W	0
1	RES	Reserved for vendor option	R/W	0
0	RegTest	Vendor test register. If high, then Vendor Test	R/W	0

Byte 2

Bit	Bit Name	Description/Function	Type	Power-Up Condition
7	REV0	Device revision, bit 4	R	0
6	REV0	Device revision, bit 3	R	0
5	REV0	Device revision, bit 2	R	0
4	REV0	Device revision, bit 1	R	0
3	REV0	Device revision, bit 0	R	0
2	VID2	Vendor ID bit 2	R	0
1	VID1	Vendor ID bit 1	R	1
0	VID0	Vendor ID bit 0	R	1

FUNCTIONAL DESCRIPTION OF THE LOGIC

PLL Multiplication Factor Selection

Mult2	Mult1	Mult0	Multiplication	Output Frequency (MHz)			
Willitz	Widiti	With	Factor	REFCLK = 100 MHz	REFCLK = 133 MHz		
0	0	0	3	300	400		
0(1)	0(1)	1 (1)	4(1)	400	533		
0	1	0	5	500	667		
0	1	1	6	6	600	800(2)	
1	0	0	8	800 (2)	_(2)		
1	0	1	9/2	450	600		
1	1	0	15/2	750 ⁽²⁾	_(2)		
1	1	1	15/4	375	500		

Modes of Operation

EN	BYPASS	Reg-Test	RegA	RegB	RegC	RegD	CLK0	CLK1	CLK2	CLK3		
L	X	Х	Х	Х	Х	X	HI-Z	HI-Z	HI-Z HI-Z			
Н	Х	1	Х	X	Х	Х	RES	ERVED FOR	ERVED FOR VENDOR TE			
Н	L	0	Х	X	Х	Х	REFCLK	REFCLK	REFCLK	REFCLK		
Н	Н	0	0	0	0	0	HI-Z	HI-Z	HI-Z	HI-Z		
Н	Н	0	1	0	0	0	PLL CLK	HI-Z	HI-Z	HI-Z		
Н	Н	0	0	1	0	0	HI-Z	PLL CLK	HI-Z	HI-Z		
Н	Н	0	1	1	0 0 PLL CLK PLL CLK	PLL CLK	HI-Z	HI-Z				
Н	Н	0	0	0	1	0	HI-Z	HI-Z	PLL CLK	HI-Z		
Н	Н	0	1	0	1	0	PLL CLK	HI-Z	PLL CLK	HI-Z		
Н	Н	0	0	1	1	0	HI-Z	PLL CLK	PLL CLK	HI-Z		
Н	Н	0	1	1	1	0	PLL CLK	PLL CLK	PLL CLK	HI-Z		
Н	Н	0	0	0	0	1	HI-Z	HI-Z	HI-Z	PLL CLK		
Н	Н	0	1	0	0	1	PLL CLK	HI-Z	HI-Z	PLL CLK		
Н	Н	0	0	1	0	1	HI-Z	PLL CLK	HI-Z	PLL CLK		
Н	Н	0	1	1	0	1	PLL CLK	PLL CLK	HI-Z	PLL CLK		
Н	Н	0	0	0	1	1	HI-Z	HI-Z	PLL CLK	PLL CLK		
Н	Н	0	1	0	1	1	PLL CLK	HI-Z	PLL CLK	PLL CLK		
Н	Н	0	0	1	1	1	HI-Z	PLL CLK	PLL CLK PLL CLK			
Н	Н	0 ⁽¹⁾	1 (1)	1 (1)	1 (1)	1 ⁽¹⁾	PLL CLK	PLL CLK	PLL CLK PLL CLK			

⁽¹⁾ Default settings after power up

⁽¹⁾ Default settings after power up (2) Output at this frequency does no Output at this frequency does not conform to all the ac device characteristics in the Device Characteristics table, or output frequency is not supported.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

			VALUE	UNIT
V_{DD}	Supply voltage range		-0.3 to 2.8	V
V	Input voltage range (2)	For SCL and SDA	-0.3 to 3.6	V
VI	Input voltage range (2)	For all other inputs	-0.3 to V _{DD} + 0.25	V
Vo	Output voltage range (2)		-0.5 to V _{DD} + 0.5	V
I _{IK}	Input clamp current, (V _I < 0, V _I > V _{DD})		±20	mA
Io	Continuous output current		±50	mA
		No airflow	94.4	
В	Thermal registeres junction to embient (3)	Airflow 150 ft/min	82.8	K/W
$R_{\theta JA}$	Thermal resistance, junction-to-ambient (3)	Airflow 250 ft/min	79.1	r/vv
		Airflow 500 ft/min	74	
$R_{\theta JC}$	Thermal resistance, junction-to-case (3)	No airflow	31.8	K/W
$R_{\theta JB}$	Thermal resistance, junction-to-board (3)	No airflow	68.9	K/W
T_J	Maximum junction temperature		125	°C
T _{stg}	Storage temperature range		-65 to 150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V_{DDP}	Supply voltage for PLL	2.375	2.5	2.625	V
V_{DDC}	Supply voltage for core	2.375	2.5	2.625	V
V_{DD}	Supply voltage for clock buffers	2.375	2.5	2.625	V
T _A	Operating free-air temperature	0		70	°C
V _{IL,CLK}	Low-level input voltage, REFCLK/REFCLKB	-0.15		0.15	V
V _{IX,CLK}	Crossing-point voltage, input voltage threshold, REFCLK/REFCLKB	0.2		0.55	V
V _{IH,CLKD}	High-level input voltage, REFCLK/REFCLKB	0.6		0.95	V
$\Delta V_{IX,CLK}$	Difference in crossing-point voltage			0.15	V
V _{IL SE}	Low-level, single-ended input voltage, REFCLK	-0.15		$V_{th SE} - 0.3$	V
V _{th SE}	Single-ended input-voltage threshold, REFCLK (1)	0.35		0.5 V _{DD}	V
V _{IH SE}	High-level, single-ended input voltage, REFCLK	V _{th SE} + 0.3		2.625	V
V _{IL L}	Low-level input voltage, ID0, ID1, EN, BYPASS	-0.15		0.8	V
V _{IH L}	High-level input voltage, ID0, ID1, EN, BYPASS	1.4		2.625	V
V _{IL SM}	Low-level input voltage, SCL, SDA (2)	-0.15		0.8	V
V _{IH SM}	High-level input voltage, SCL, SDA (2)	1.4		3.465	V

⁽¹⁾ When using a single-ended clock input, V_{th} is supplied to the REFCLKB pin. Duty cycle of single-ended REFCLK input is measured at V_{th}.

⁽²⁾ The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S1P (high-k board).

⁽²⁾ This range of SCL and SDA input high voltage allows the CDCD5704 to co-exist with 3.3 V, 2.5 V, and 1.8 V devices on the same serial-interface bus system.

RECOMMENDED AC OPERATING CONDITIONS

		MIN	NOM MAX	UNIT
t _{CYCLE,IN}	REFCLK/REFCLKB input cycle time	7	11	ns
t _{CYC,TEST}	REFCLK/REFCLKB input cycle time for BYPASS	4	40	ns
$t_{J,IN}$	Input cycle-to-cycle jitter(1)		185	ps
DC _{IN}	Input duty cycle over 10,000 cycles (2)	40%	60%	
t _r /t _f	Rise and fall time for REFCLK signal from 20% to 80% of input voltage V_{IN}	175	700	ps
t _{cr} /t _{cf}	Difference between rise time and fall time of REFCLK signal from 20% to 80%		150	ps
f _{m,IN}	SSC frequency modulation repeat frequency ⁽³⁾	30	33	kHz
P _{m tria}	Modulation index (= frequency deviation/center frequency) for triangle modulation (3)		0.6%	
P _{m n tria}	Modulation index (= frequency deviation/center frequency) for non-triangle modulation (4)		0.5%	
t _{SR}	Input slew rate REFCLK/REFCLKB	1	4	V/ns
SERIAL II	NTERFACE TIMING		·	
f _{SCLK}	SCLK frequency ⁽⁵⁾	0	100	kHz
t _{h(START)}	START hold time (5)	4		μs
t _{w(SCLL)}	SCLK low-pulse duration ⁽⁵⁾	4.7		μs
t _{w(SCLH)}	SCLK high-pulse duration (5)	4		μs
t _{su(START)}	START setup time ⁽⁵⁾	4.7		μs
t _{h(SDATA)}	SDATA hold time (5)	300		ps
t _{su(SDATA)}	SDATA setup time ⁽⁵⁾	250		ps
$\underset{r_{(SM)}}{t_{r(SDATA)}}/$	SDATA/SCLK input rise time ⁽⁵⁾		1000	ns
$t_{f(SDATA)}/t_{f(SM)}$	SDATA/SCLK input fall time ⁽⁵⁾		300	ns
t _{su(STOP)}	STOP setup time ⁽⁵⁾	4		μs
t _(BUS)	Bus free time	4.7		μs

- RefCLK jitter is measured at $(V_{IH(nom)} V_{IL(nom)})/2$ and is the absolute value of the worst-case deviation. Measured at crossing points for differential clock input or at input threshold voltage V_{TH} for single-ended clock input. (2)
- If input modulation is used; input modulation is allowed but not required.
- The amount of allowed spreading for any non-triangular modulation is determined by the induced downstream tracking skew, which cannot exceed the skew generated by the specified 0.6% triangular modulation. Typically, the amount of allowed non-triangular modulation is about 0.5%.
- See Figure 1 for the timing behavior of the serial interface.

DEVICE CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OVERALL	PARAMETER					
	Supply ourront (-)	At 300 MHz and 2.625 V		70	85	mA
I _{DD}	Supply current (= $I_{VDD} + I_{VDDP} + I_{VDDC}$)	At 667 MHz and 2.625 V		90	115	ША
V _{PUC}	Supply voltage threshold for power-up control circuit	Over complete supply voltage range	1.1	1.8	2.2	V
DC DEVIC	E CHARACTERISTICS					
V _{OX}	Differential output crossing-point voltage (1)	Output load; see Figure 3.	0.9	1	1.1	V
V _{cos}	Output voltage swing (p-p, single-ended) ⁽²⁾		0.3	0.325	0.35	V
V _{OL,ABS}	Absolute output low voltage (3)		0.85			V
V _{ISET}	Reference voltage for swing control current IREF ⁽⁴⁾	V _{DD} = 2.375 V to 2.625 V, T = 0°C to 70°C	0.98	1	1.02	V

- (1) V_{OX} is measured on external divider as shown in Figure 3.
- V_{COS} = (clock output high voltage clock output low voltage), at the measurement points shown in Figure 3, excluding overshoot and
- $V_{\text{OL},\text{ABS}}$ is measured at the clock output of the package, instead of the measurement points of Figure 3.
- (4) I_{REF} is equal to V_{ISET}/R_{RC} . Tolerance of R_{RC} must be $\pm 1\%$ or smaller.

DEVICE CHARACTERISTICS (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{OL} /I _{REF}	Ratio of output low current to reference current		6.8	7	7.2	
I _{OL,ABS}	Minimum current at V _{OL,ABS} ⁽⁵⁾	V _{OL,ABS} = 0.85 V	45			mA
V _{OL,SDA}	SDA output low voltage	V_{DD} = 2.375 V to 2.625 V, I_{OH} = 4 mA			0.4	V
I _{OL,SDA}	SDA output low current	$V_{DD} = 2.375 \text{ V to } 2.625 \text{ V},$ $V_{O} = 0.8 \text{ V}$	6			mA
I _{OZ}	Output 3-state current	CLK0 to CLK4			±50	μΑ
I _{IR}	REFCLK input current	$V_I = 0 V \text{ or } V_{DD}$			±5	μΑ
I _{IL}	Logic input current	V _I = 0 V or V _{DD}			±10	μΑ
AC DEVIC	CE CHARACTERISTICS					
C _{IR}	Input capacitance, REFCLK, REFCLKB ⁽⁶⁾			2	7	pF
C _{IL}	Input capacitance logic pins ⁽⁷⁾			2	10	pF
t _{CYCLE}	Clock cycle time (8)	300 MHz to 667 MHz, possible SSC is not taken into account	1.5		3.33	ns
	Cycle to eyele iitted of 1. C cleak eyeles	10,000 cycles, 300 MHz to 635 MHz ⁽⁹⁾			40	no
t _{jit(per)}	Cycle-to-cycle jitter of 1–6 clock cycles	10,000 cycles, 636 MHz to 667 MHz ⁽⁹⁾			30	ps
L ₁	SSB phase noise at 1 MHz	300-MHz-667-MHz output (10)		-115	-97	dBc/Hz
L ₂₀	SSB phase noise at 20 MHz	300-MHz-667-MHz output ⁽¹⁰⁾		-150	-128	dBc/Hz
$\Delta t_{\text{skew(o)}}$	Drift in t _{skew(o)} (11)	V _{DD} = 2.375 V to 2.625 V, T = 0 to 70°C			15	ps
odc	Output duty cycle		45%	50%	55%	
+	Cycle to cycle duty cycle error	300 MHz to 635 MHz			40	20
t _{ODC,ERR}	Cycle-to-cycle duty-cycle error	636 MHz to 667 MHz			30	ps
t _{ERR,SSC}	PLL output phase error when tracking SSC		-100		100	ps
t _r /t _f	Output rise and fall time	V _{OUT} = 20%–80%	100		300	ps
t _{cr} /t _{cf}	Difference between output rise and fall times	$V_{OUT} = 20\%-80\%$, $f_{out} = 300 \text{ MHz}$ to 667 MHz			100	ps
Z _{OUT}	Output dynamic impedance ⁽¹²⁾	V _{OL} = 0.9 V	750			Ω
tL	Power-up lock time	Time from VDD, VDDP, VDDC being applied and settled until clock outputs are settled			3	ms
$t_{L(\omega)}$	PLL lock time after (1) frequency change via serial interface (programming of SCL and SDA pins completed) or (2) EN and/or BYPASS changed state	Time from signals for selecting a mode of operation (1) or (2) applied and settled until clock outputs are settled			3	ms

- Minimum I_{OLABS} is measured at the clock output pins of the package, as shown in Figure 3.
- Capacitance measured at frequency = 1 MHz, dc bias = 0.9 V, and $V_{AC} < 100 \text{ mV}$ Capacitance measured at frequency = 1 MHz, dc bias = 0.9 V, and $V_{AC} < 100 \text{ mV}$ (6)
- (7)
- Maximum and minimum output clock cycle times are based on nominal output frequency of 300 MHz and 667 MHz, respectively. For spread-spectrum-modulated differential or single-ended REFCLK, the output clock tracks the modulation of the input.
- Output short-term jitter specification is the absolute value of the worst-case deviation and is defined in the Jitter section.
- (10) Device must not exceed the upper limit of L(f) for 1-MHz to 100-MHz offset as shown in the Phase Noise section.
- (11) t_{skew} is the timing difference between any two of the four differential clocks and is measured at common-mode voltage. Δt_{skew} is the change in t_{skew} when the operating temperature and supply voltage change.
- (12) Z_{OUT} is defined at the output pins directly. The value is determined as the ac small-signal impedance at low frequencies (< 100 kHz) and when output is driving a high state.

PHASE NOISE

For the offset frequency range from 1 MHz to 100 MHz, phase noise of the CDCD5704 does not exceed the single-sideband phase noise (spectral purity) described by the following equation given by Rambus.

$$L(f) = 10 \log [1 + (50 \times 10^6 / f)^{2.4}] - 138 dBc/Hz$$

Selected numerical values are in given in the following table.

f = offset frequency	1 (L ₁)	5	10	15	20 (L ₂₀)	40	80	100	MHz
L(f) = SSB phase noise	-97	-114	-121	-125	-128	-134	-137	-138	dBc/Hz

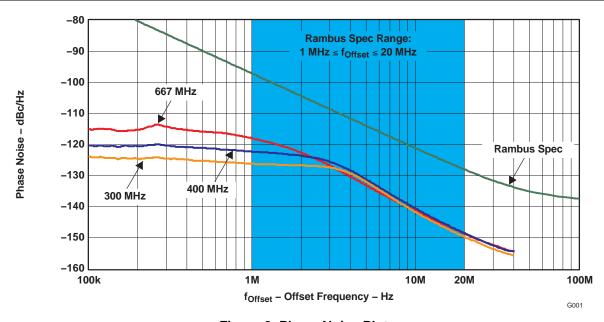
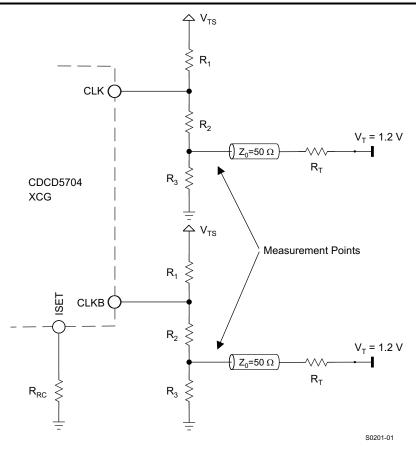



Figure 2. Phase Noise Plot

NOTE: In the power-up sequence, the rise time for the external voltage applied to the clock output pins (V_{TS}) must be equal to or longer than the rise time for the supply voltage of the device $(V_{DD},\,V_{DDP},\,V_{DDC})$.

	PARAMETER	VALUE for 50- Ω LINE	VALUE for I _{OL,ABS}	TOLERANCE	UNIT
R ₁	Termination resistor	39.2	34	±1%	Ω
R ₂	Termination resistor	66.5	31.8	±1%	Ω
R_3	Termination resistor	93.1	48.7	±1%	Ω
R _T	Termination resistor	49.9	28	±1%	Ω
R _{RC}	Swing control resistor	200	147	±1%	Ω
V_{TS}	Source termination voltage	2.5	2.5	±5%	V
V _T	Termination voltage	1.2	1.2	±5%	V

Figure 3. Output Test Load

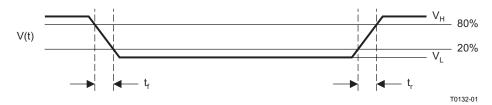


Figure 4. Input and Output Waveforms

T0135-01

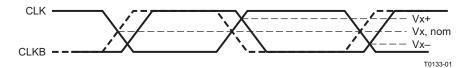


Figure 5. Crossing-Point Voltage

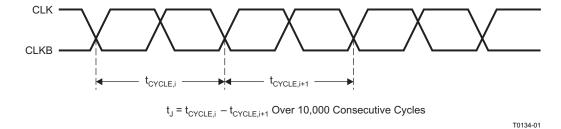


Figure 6. One-Period Cycle-to-Cycle Jitter

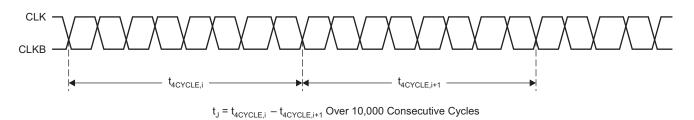


Figure 7. Four-Period Cycle-to-Cycle Jitter

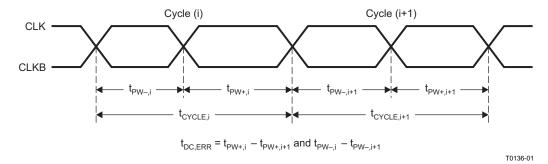
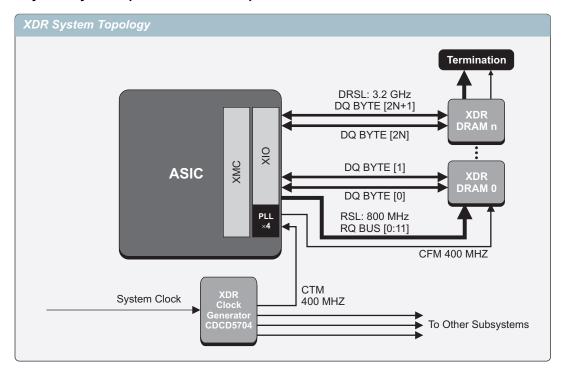



Figure 8. Cycle-to-Cycle Duty-Cycle Error

APPLICATION INFORMATION

XDR Memory Subsystem (Source: Rambus)

M0054-01

ii.com 24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
CDCD5704PW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	CDCD5704.	Samples
CDCD5704PWG4	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	CDCD5704.	Samples
CDCD5704PWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	CDCD5704.	Samples
CDCD5704PWRG4	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	CDCD5704.	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

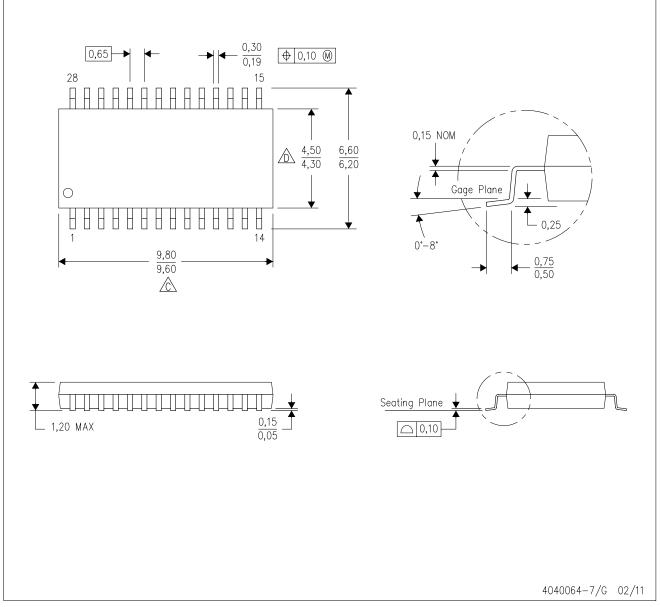
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

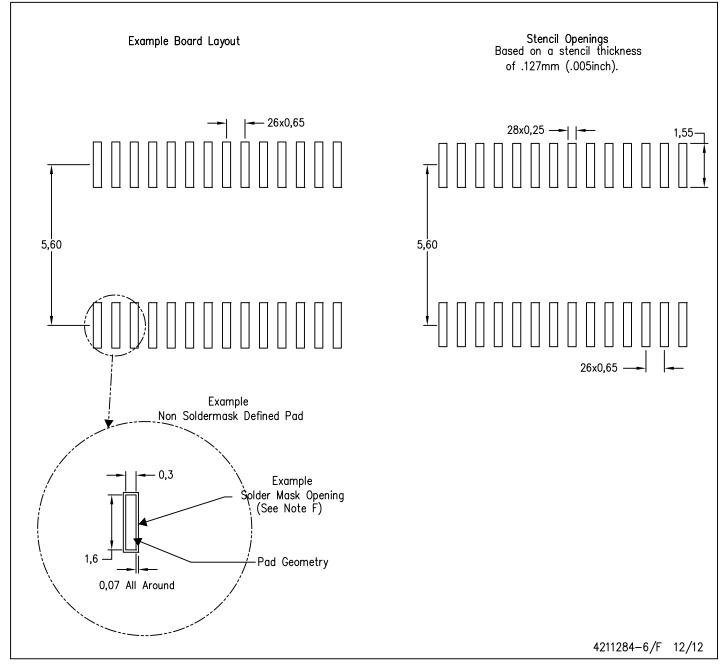
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



24-Jan-2013

PW (R-PDSO-G28)

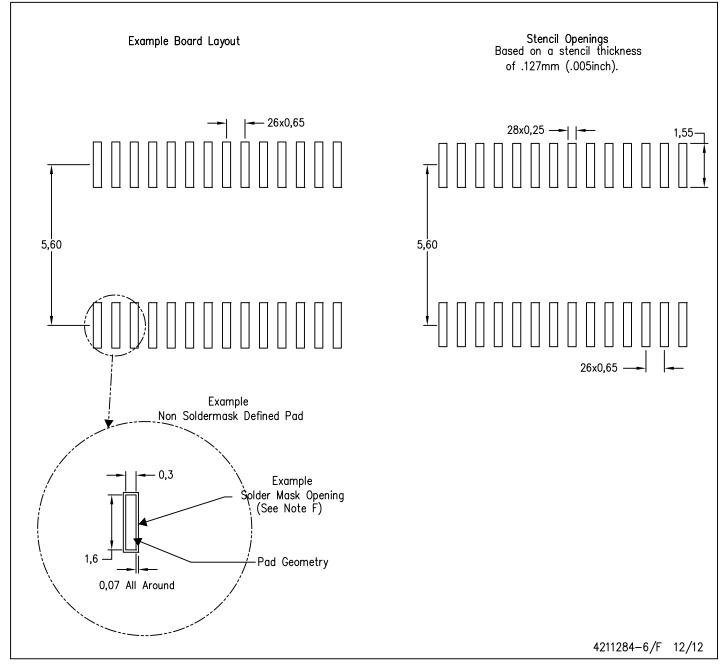
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>