FUZETEC TECHNOLOGY CO., LTD.

1

NO.

Product Specification and Approval Sheet Version

Surface Mountable PTC Resettable Fuse: FSMD350-1206RZ

1. Summary

- (a) RoHS Compliant & Halogen Free
- (b) Applications: All high-density boards
- (c) Product Features: Small surface mountable, Solid state, Faster time to trip than standard SMD devices, Lower resistance than standard SMD devices
- (d) Operation Current: 3.50A
- (e) Maximum Voltage: 6V
- (f) Temperature Range : -40° C to 85° C

2. Agency Recognition

- Pending UL:
- C-UL: Pending
- TÜV: Pending

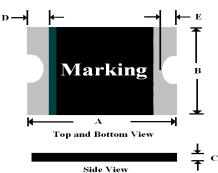
3. Electrical Characteristics (23°℃)

Part	Hold	Trip	Rated	Max Typical Max Time to Trip Resis		Max Time to Trip		tance	
	Current	Current	Voltage	Current	Power	Current	Time	RMIN	R1MAX
Number	Ін, А	IT, A	Vmax, Vdc	Imax, A	Pd, W	Α	Sec	Ohms	Ohms
FSMD350-1206RZ	3.50	7.00	6	100	0.8	8.0	5.0	0.003	0.018

In=Hold current-maximum current at which the device will not trip at 23°C still air.

IT=Trip current-minimum current at which the device will always trip at 23° C still air.

V MAX=Maximum voltage device can withstand without damage at it rated current.(I MAX)

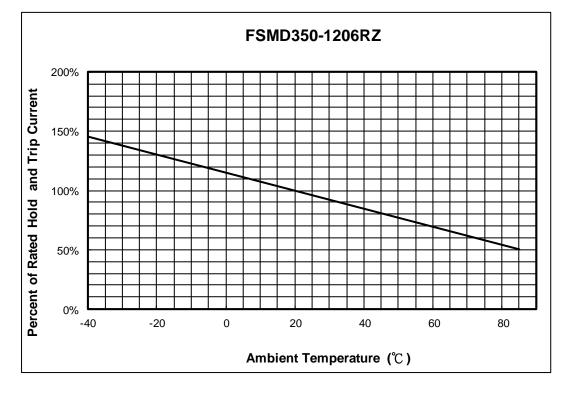

I MAX= Maximum fault current device can withstand without damage at rated voltage (V MAX).

Pd=Typical power dissipated-type amount of power dissipated by the device when in the tripped state in 23°C still air environment. RMIN=Minimum device resistance at 23 $^{\circ}$ prior to tripping. RMIN=Maximum device resistance at 23 $^{\circ}$ measured 1 hour after tripping or reflow soldering of 260 $^{\circ}$ for 20 seconds.

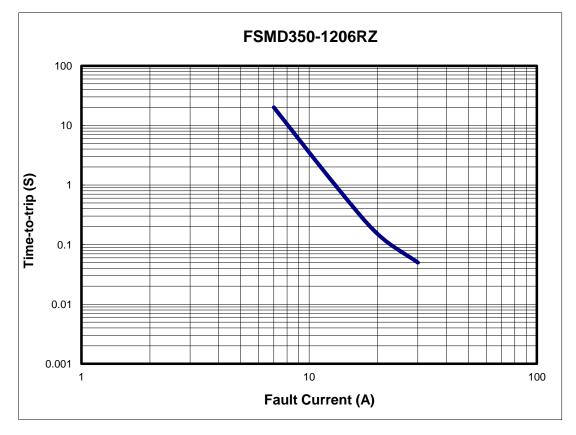
Termination pad characteristics

Termination pad materials: Pure Tin

4. FSMD Product Dimensions (Millimeters)



Part		4	E	3	(2	Γ)	E	
Number	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Max
FSMD350-1206RZ	3.00	3.50	1.50	1.80	0.60	1.00	0.25	0.75	0.10	0.45


NOTE : Specification subject to change without notice.

FUZETEC TECHNOLOGY CO., LTD.	NO.		PQ18-33E	
Product Specification and Approval Sheet		1	Page	2/4

5. Thermal Derating Curve

6. Typical Time-To-Trip at 23° C

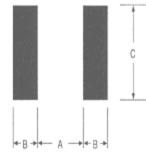
FUZETEC TECHNOLOGY CO., LTD.	NO.	Р	Q18-33E	
Product Specification and Approval Sheet		1	Page	3/4

7. Material Specification

Terminal pad material: Pure Tin

Soldering characteristics: Meets EIA specification RS 186-9E, ANSI/J-std-002 Category 3

8. Part Numbering and Marking System


Part Numbering System

Part Marking System

9. Pad Layouts Solder Reflow and Rework Recommendations

The dimension in the table below provide the recommended pad layout for each FSMD1206 device

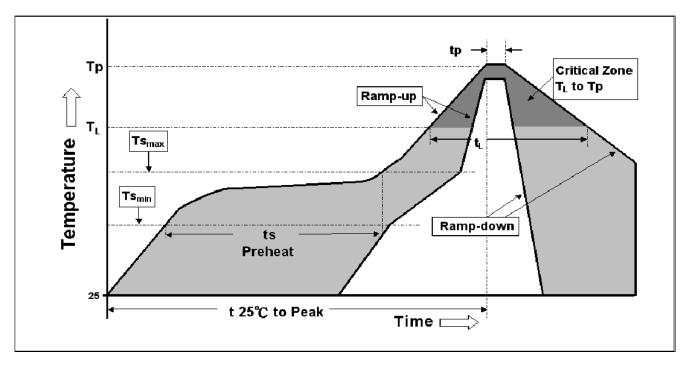
Pad dimensions (millimeters)							
Device	A Nominal	B Nominal	C Nominal				
FSMD350-1206RZ	2.00	1.00	1.90				

Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Tsmax to Tp)	3 °C/second max.
Preheat :	
Temperature Min (Tsmin)	150 ℃
Temperature Max (Tsmax)	200 ℃
Time (tsmin to tsmax)	60-180 seconds
Time maintained above:	
Temperature(T _L)	217 ℃
Time (t _L)	60-150 seconds
Peak/Classification Temperature(Tp) :	260 ℃
Time within 5° $\mathbb C$ of actual Peak :	
Temperature (tp)	20-40 seconds
Ramp-Down Rate :	6 °C/second max.
Time 25 $^\circ\!\!\mathbb{C}$ to Peak Temperature :	8 minutes max.

Note 1: All temperatures refer to of the package,

measured on the package body surface.

Solder reflow


- Due to "Lead Free" nature, Temperature and Dwelling time for the soldering zone is higher than those for Regular. This may cause damage to other components.
- 1. Recommended max past thickness > 0.25mm.
- 2. Devices can be cleaned using standard methods and aqueous solvent.
- 3. Rework use standard industry practices.
- 4. Storage Envorinment : < 30°C / 60%RH

Caution:

- If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.
- 2. Devices are not designed to be wave soldered to the bottom side of the board.

FUZETEC TECHNOLOGY CO., LTD.	NO.	PQ18-33E			
Product Specification and Approval Sheet	Version	1	Page	4/4	

Reflow Profile

Warning: -Operation beyond the specified maximum ratings or improper use may result in damage and possible electrical arcing and/or flame.

-PPTC device are intended for occasional overcurrent protection. Application for repeated overcurrent condition and/or prolonged trip are not anticipated.

-Avoid contact of PPTC device with chemical solvent. Prolonged contact will damage the device performance.