深圳市翔芯微科技有限公司
Shenzhen Gity Cheunk oore Mioro Tedhmolovy Go．．Ltd．

3．3V－Powered，10Mbps and Slew－Rate－Limited True RS－485／RS－422 Transceivers

General Description

The MAX3483，MAX3485，MAX3486，MAX3488， MAX3490，and MAX3491 are 3．3V，low－power trans－ ceivers for RS－485 and RS－422 communication．Each part contains one driver and one receiver．The MAX3483 and MAX3488 feature slew－rate－limited dri－ vers that minimize EMI and reduce reflections caused by improperly terminated cables，allowing error－free data transmission at data rates up to 250 kbps ．The par－ tially slew－rate－limited MAX3486 transmits up to 2．5Mbps．The MAX3485，MAX3490，and MAX3491 transmit at up to 10 Mbps ．
Drivers are short－circuit current limited and are protect－ ed against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high－impedance state．The receiver input has a fail－safe feature that guarantees a logic－high output if both inputs are open circuit．
The MAX3488，MAX3490，and MAX3491 feature full－ duplex communication，while the MAX3483，MAX3485， and MAX3486 are designed for half－duplex communi－ cation．

Applications
Low－Power RS－485／RS－422 Transceivers
Telecommunications
Transceivers for EMI－Sensitive Applications Industrial－Control Local Area Networks
Features
－Operate from a Single 3．3V Supply－ No Charge Pump！
－Interoperable with＋5V Logic
－8ns Max Skew（MAX3485／MAX3490／MAX3491）
－Slew－Rate Limited for Errorless Data Transmission （MAX3483／MAX3488）
－2nA Low－Current Shutdown Mode （MAX3483／MAX3485／MAX3486／MAX3491）
－-7 V to +12 V Common－Mode Input Voltage Range
－Allows up to 32 Transceivers on the Bus
－Full－Duplex and Half－Duplex Versions Available
－Industry Standard 75176 Pinout
（MAX3483／MAX3485／MAX3486）
－Current－Limiting and Thermal Shutdown for Driver Overload Protection

Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX3483CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3483CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3483C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX3483EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3483ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3485CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3485CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3485C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX3485EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3485ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Ordering Information continued at end of data sheet．
＊Contact factory for for dice specifications．
Selection Table

PART NUMBER	GUARANTEED DATA RATE （Mbps）	SUPPLY VOLTAGE （V）	HALF／FULL DUPLEX	SLEW－RATE LIMITED	DRIVER／ RECEIVER ENABLE	SHUTDOWN CURRENT （nA）	$\begin{gathered} \text { PIN } \\ \text { COUNT } \end{gathered}$
MAX3483	0.25	3.0 to 3.6	Half	Yes	Yes	2	8
MAX3485	10		Half	No	Yes	2	8
MAX3486	2.5		Half	Yes	Yes	2	8
MAX3488	0.25		Full	Yes	No	－	8
MAX3490	10		Full	No	No	－	8
MAX3491	10		Full	No	Yes	2	14

Call toll free 1－800－998－8800 for free samples or literature．

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

ABSOLUTE MAXIMUM RATINGS

14-Pin Plastic DIP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 800 mW 14 -Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 667 mW Operating Temperature Ranges
MAX34__C
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Torag Tomperature Rang
Lead Temperature (soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Differential Driver Output	VOD	$R_{L}=100 \Omega$ (RS-422), Figure 4		2.0		V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$ (RS-485), Figure 4		1.5		
		$\mathrm{R}_{\mathrm{L}}=60 \Omega$ (RS-485), $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Figure 5		1.5		
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States (Note 1)	$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure 4			0.2	V
Driver Common-Mode Output Voltage	Voc	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure 4			3	V
Change in Magnitude of Common-Mode Output Voltage (Note 1)	$\Delta \mathrm{V}_{\text {OC }}$	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure 4			0.2	V
Input High Voltage	V_{IH}	DE, DI, RE		2.0		V
Input Low Voltage	VIL	DE, DI, $\overline{R E}$			0.8	V
Logic Input Current	IIN1	DE, DI, $\overline{\mathrm{RE}}$			± 2	$\mu \mathrm{A}$
Input Current (A, B)	IIN2	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \\ & \mathrm{~V} C \mathrm{C}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$	V IN $=12 \mathrm{~V}$		1.0	mA
			$\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$		-0.8	
Output Leakage (Y, Z)	lo	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=0 \mathrm{~V}, \\ & \mathrm{~V} \mathrm{CC}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \mathrm{MAX} 3491 \end{aligned}$	Vout $=12 \mathrm{~V}$		20	$\mu \mathrm{A}$
			VOUT $=-7 \mathrm{~V}$		-20	
Output Leakage (Y, Z) in Shutdown Mode	lo	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \mathrm{MAX} 4491 \end{aligned}$	Vout $=12 \mathrm{~V}$		1	$\mu \mathrm{A}$
			VOUT $=-7 \mathrm{~V}$		-1	
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		-0.2	0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		50		mV
Receiver Output High Voltage	V OH	IOUT $=-1.5 \mathrm{~mA}, \mathrm{~V}$ ID $=200 \mathrm{mV}$, Figure 6		$\mathrm{V}_{\text {CC }}-0.4$		V
Receiver Output Low Voltage	VOL	IOUT $=2.5 \mathrm{~mA}, \mathrm{~V}$ ID $=200 \mathrm{mV}$, Figure 6			0.4	V
Three-State (High Impedance) Output Current at Receiver	lozr	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		12		k Ω

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Current	Icc	No load,$\mathrm{DI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & \mathrm{DE}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{RE}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		1.1	2.2	mA
			$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \\ & \mathrm{RE}=0 \mathrm{~V} \end{aligned}$		0.95	1.9	
Supply Current in Shutdown Mode	ISHDN	$\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DI}=\mathrm{V}_{\mathrm{CC}}$ or 0 V			0.002	1	$\mu \mathrm{A}$
Driver Short-Circuit Output Current	IOSD	$\mathrm{V}_{\text {OUT }}=-7 \mathrm{~V}$				-250	mA
		VOUT $=12 \mathrm{~V}$				250	
Receiver Short-Circuit Output Current	IOSR	$\mathrm{V} \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$		± 8		± 60	mA

DRIVER SWITCHING CHARACTERISTICS—MAX3485, MAX3490, and MAX3491
$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	1	22	35	ns	
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	3	8	25	ns	
Driver Propagation Delay, Low-to-High Level	tpli	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	7	22	35	ns	
Driver Propagation Delay, High-to-Low Level	tPHL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	7	22	35	ns	
\|tPLH - tphL	Driver Propagation Delay Skew (Note 2)	tpDS	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8			8	ns
DRIVER OUTPUT ENABLE/DISABLE TIMES (MAX3485/MAX3491 only)							
Driver Output Enable Time to Low Level	tPZL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		45	90	ns	
Driver Output Enable Time to High Level	tpZH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		45	90	ns	
Driver Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		40	80	ns	
Driver Output Disable Time from Low Level	tpLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		40	80	ns	
Driver Output Enable Time from Shutdown to Low Level	tpSL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		650	900	ns	
Driver Output Enable Time from Shutdown to High Level	tPSH	RL $=110 \Omega$, Figure 9		650	900	ns	

DRIVER SWITCHING CHARACTERISTICS—MAX3486

$\left(\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	24	48	70	ns	
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	15	35	60	ns	
Driver Propagation Delay, Low-to-High Level	tPLH	$R_{L}=27 \Omega$, Figure 8	20	48	70	ns	
Driver Propagation Delay, High-to-Low Level	tPHL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	20	48	70	ns	
\|tPLH - tPhL	Driver Propagation Delay Skew (Note 2)	tpDS	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8			11	ns
Driver Output Enable Time to Low Level	tPZL	$R_{L}=110 \Omega$, Figure 10		55	100	ns	
Driver Output Enable Time to High Level	tPZH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		55	100	ns	
Driver Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		45	80	ns	
Driver Output Disable Time from Low Level	tPLZ	$R_{L}=110 \Omega$, Figure 10		45	80	ns	
Driver Output Enable Time from Shutdown to Low Level	tpSL	$R_{L}=110 \Omega$, Figure 10		700	1000	ns	
Driver Output Enable Time from Shutdown to High Level	tPSH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		700	1000	ns	

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transc eivers

DRIVER SWITCHING CHARACTERISTICS—MAX3483 and MAX3488
$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	600	900	1400	ns	
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	400	700	1200	ns	
Driver Propagation Delay, Low-to-High Level	tplh	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	700	1000	1500	ns	
Driver Propagation Delay, High-to-Low Level	tpHL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	700	1000	1500	ns	
\|tPLH - tPHL	Driver Propagation Delay Skew (Note 2)	tpDS	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8		100		ns
DRIVER OUTPUT ENABLE/DISABLE TIMES (MAX3483 only)							
Driver Output Enable Time to Low Level	tPZL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		900	1300	ns	
Driver Output Enable Time to High Level	tpZH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		600	800	ns	
Driver Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		50	80	ns	
Driver Output Disable Time from Low Level	tpLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		50	80	ns	
Driver Output Enable Time from Shutdown to Low Level	tpSL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		1.9	2.7	$\mu \mathrm{s}$	
Driver Output Enable Time from Shutdown to High Level	tPSH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		2.2	3.0	$\mu \mathrm{s}$	

RECEIVER SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Time to Shutdown	tshdn	MAX3483/MAX3485/MAX3486/MAX3491 only (Note 3)	80	190	300	ns	
Receiver Propagation Delay, Low-to-High Level	trpLH	V ID $=0 \mathrm{~V}$ to $3.0 \mathrm{~V}, \mathrm{CLL}^{\text {= }} 15 \mathrm{pF}$, Figure 11	25	65	90	ns	
		MAX3483/MAX3488	25	75	120		
Receiver Propagation Delay, High-to-Low Level	trPHL	V ID $=0 \mathrm{~V}$ to $3.0 \mathrm{~V}, \mathrm{CL}=15 \mathrm{pF}$, Figure 11	25	65	90	ns	
		MAX3483/MAX3488	25	75	120		
\|tPLH - tphl	Receiver Propagation Delay Skew	trPDS	V ID $=0 \mathrm{~V}$ to $3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 11			10	ns
		MAX3483/MAX3488			20		
Receiver Output Enable Time to Low Level	tPRZL	$C_{L}=15 p F$, Figure 12, MAX3483/MAX3485/MAX3486/MAX3491 only		25	50	ns	
Receiver Output Enable Time to High Level	tpRZH	$C_{L}=15 p F$, Figure 12, MAX3483/MAX3485/MAX3486/MAX3491 only		25	50	ns	
Receiver Output Disable Time from High Level	tPRHZ	$C_{L}=15 p F$, Figure 12, MAX3483/MAX3485/MAX3486/MAX3491 only		25	45	ns	
Receiver Output Disable Time from Low Level	tPRLZ	$C_{L}=15 p F$, Figure 12, MAX3483/MAX3485/MAX3486/MAX3491 only		25	45	ns	
Receiver Output Enable Time from Shutdown to Low Level	tpRSL	$C_{L}=15 p F$, Figure 12, MAX3483/MAX3485/MAX3486/MAX3491 only		720	1400	ns	
Receiver Output Enable Time from Shutdown to High Level	tPRSH	$C_{L}=15 p F$, Figure 12, MAX3483/MAX3485/MAX3486/MAX3491 only		720	1400	ns	

Note 1: $\Delta \mathrm{V}_{\mathrm{OD}}$ and $\Delta \mathrm{V}_{\mathrm{OC}}$ are the changes in V_{OD} and V_{OC}, respectively, when the D input changes state.
Note 2: Measured on |tpLH (Y) - tphl (Y)| and |tpLH (Z) - tphl (Z)|.
Note 3: The transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 80ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 300 ns , the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Typical Operating Characteristics
$\left(\overline{\mathrm{V}} \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

OUTPUT CURRENT vs. DRIVER OUTPUT LOW VOLTAGE

OUTPUT CURRENT vs.
RECEIVER OUTPUT HIGH VOLTAGE

DRIVER OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGE

RECEIVER OUTPUT HIGH VOLTAGE vs. TEMPERATURE

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE

OUTPUT CURRENT vs. DRIVER OUTPUT HIGH VOLTAGE

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Typical Operating Characteristics (continued)

TBMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$ 100

vs. TEMPERATURE

Pin Description

PIN			NAME	
MAX3483/ MAX3485/ MAX3486	MAX3488/ MAX3490	MAX3491		

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 1. MAX3483/MAX3485/MAX3486 Pin Configuration and Typical Operating Circuit

Figure 2. MAX3488/MAX3490 Pin Configuration and Typical Operating Circuit

Figure 3. MAX3491 Pin Configuration and Typical Operating Circuit

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 4. Driver $V_{O D}$ and $V_{O C}$

Figure 6. Receiver $V_{O H}$ and $V_{O L}$

Figure 7. Driver Differential Output Delay and Transition Times

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 8. Driver Propagation Times

Figure 9. Driver Enable and Disable Times ($t_{\text {PZH }}, t_{P S H}, t_{\text {PHZ }}$)

Figure 10. Driver Enable and Disable Times ($\left.t_{P Z L}, t_{P S L}, t_{P L Z}\right)$

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transc eivers

Figure 11. Receiver Propagation Delay

Figure 12. Receiver Enable and Disable Times

Note 4: The input pulse is supplied by a generator with the following characteristics: $\mathrm{PRR}=250 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{tr} \leq 6.0 \mathrm{~ns}, \mathrm{ZO}_{\mathrm{O}}=50 \Omega$. Note 5: C_{L} includes probe and stray capacitance.

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Function Tables

Devices with Receiver/Driver Enable (MAX3483/MAX3485/MAX3486/MAX3491)

Table 1. Transmitting

INPUTS			OUTPUTS		MODE
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{D I}$	$\mathbf{B}^{\boldsymbol{*}}$	\mathbf{A}^{*}	
X	1	1	0	1	Normal
X	1	0	1	0	Normal
0	0	X	High-Z	High-Z	Normal
1	0	X	High-Z	High-Z	Shutdown

* B and A outputs are Z and Y, respectively, for full-duplex part (MAX3491).
$X=$ Don't care; High $-Z=$ High impedance

Table 2. Receiving

INPUTS			OUTPUTS	MODE
$\overline{\mathbf{R E}}$	DE	A, B	RO	
0	0^{*}	$\geq+0.2 \mathrm{~V}$	1	Normal
0	0^{*}	$\leq-0.2 \mathrm{~V}$	0	Normal
0	0^{*}	Inputs Open	1	Normal
1	0	X	High-Z	Shutdown

* DE is a "don't care" (x) for the full-duplex part (MAX3491). $X=$ Don't care; High $-Z=$ High impedance

Devices without Receiver/Driver Enable (MAX3488/MAX3490)

Table 3. Transmitting
Table 4. Receiving

INPUT	OUTPUTS	
DI	Z	Y
1	0	1
0	1	0

INPUTS	OUTPUT
A, B	RO
$\geq+0.2 \mathrm{~V}$	1
$\leq-0.2 \mathrm{~V}$	0
Inputs Open	1

Figure 13. Driver Output Waveform and FFT Plot of MAX3485/ MAX3490/MAX3491 Transmitting a 125kHz Signal

Applications Information

The MAX3483/MAX3485/MAX3486/MAX3488/MAX3490/ MAX3491 are low-power transceivers for RS-485 and RS-422 communications. The MAX3483 and MAX3488 can transmit and receive at data rates up to 250 kbps , the MAX3486 at up to 2.5 Mbps , and the MAX3485/ MAX3490/MAX3491 at up to 10Mbps. The MAX3488/ MAX3490/MAX3491 are full-duplex transceivers, while the MAX3483/MAX3485/MAX3486 are half-duplex. Driver Enable (DE) and Receiver Enable (RE) pins are included on the MAX3483/MAX3485/MAX3486/ MAX3491. When disabled, the driver and receiver outputs are high impedance.

Reduced EMI and Reflections
 (MAX3483/MAX3486/MAX3488)

The MAX3483/MAX3488 are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 13 shows both the driver output waveform of a MAX3485/MAX3490/MAX3491 transmitting a 125 kHz signal and the Fourier analysis of that waveform. High-frequency harmonics with large amplitudes are evident. Figure 14 shows the same information, but for the slew-rate-limited MAX3483/MAX3488 transmitting the same signal. The high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.

Low-Power Shutdown Mode

(MAX3483/MAX3485/MAX3486/MAX3491)
A low-power shutdown mode is initiated by bringing both $\overline{R E}$ high and DE low. The devices will not shut down unless both the driver and receiver are disabled (high impedance). In shutdown, the devices typically draw only 2 nA of supply current.
For these devices, the $t_{\text {PSH }}$ and $t_{\text {PSL }}$ enable times assume the part was in the low-power shutdown mode; the $t_{\text {PZH }}$ and $t_{\text {PZL }}$ enable times assume the receiver or driver was disabled, but the part was not shut down.

Figure 14. Driver Output Waveform and FFT Plot of MAX3483/ MAX3488 Transmitting a 125 kHz Signal

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 15. MAX3485/MAX3490/MAX3491 Driver Propagation Delay

Figure 17. MAX3483/MAX3488 Driver Propagation Delay

Figure 19. MAX3483/MAX3488 System Differential Voltage at 125 kHz Driving 4000 ft of Cable

Figure 16. MAX3485/MAX3490/MAX3491 Receiver Propagation Delay Driven by External RS-485 Device

Figure 18. MAX3483/MAX3488 Receiver Propagation Delay

Figure 20. MAX3485/MAX3490/MAX3491 System Differential Voltage at 125 kHz Driving 4000 ft of Cable

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Figure 21. MAX3483/MAX3485/MAX3486 Typical RS-485 Network

Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.

Propagation Delay

Figures 15-18 show the typical propagation delays. Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle).
The receiver skew time, $\left.\right|_{\text {PRLL }}-\mathrm{t}_{\text {PRHL }} \mid$, is under 10 ns (20ns for the MAX3483/MAX3488). The driver skew times are 8ns for the MAX3485/MAX3490/MAX3491, 11 ns for the MAX3486, and typically under 100ns for the MAX3483/MAX3488.

Line Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 23.
Figures 19 and 20 show the system differential voltage for parts driving 4000 feet of 26AWG twisted-pair wire at 125 kHz into 120Ω loads.

Typical Applications
The MAX3483, MAX3485, MAX3486, MAX3488, MAX3490, and MAX3491 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 21 and 22 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 23.
To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX3483/MAX3488 and the partially slew-rate-limited MAX3486 are more tolerant of imperfect termination.

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

NOTE: REAND DE ON MAX3491 ONLY.

Figure 22. MAX3488/MAX3490/MAX3491 Full-Duplex RS-485 Network

Figure 23. Line Repeater for MAX3488/MAX3490/MAX3491

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX3486CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3486CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3486C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{\star}$
MAX3486EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3486ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3488CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3488CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3488C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX3488EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3488ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3490CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3490CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3490C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX3490EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3490ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3491CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3491CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3491C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX3491EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3491ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO

* Contact factory for for dice specifications.

TRANSISTOR COUNT: 810
SUBSTRATE CONNECTED TO GROUND

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

