TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π -MOSVI)

2SK3797

Switching Regulator Applications

• Low drain-source ON resistance: RDS (ON) = 0.32Ω (typ.)

• High forward transfer admittance: $|Y_{fs}| = 7.5 \text{ S (typ.)}$

• Low leakage current: IDSS = 100 $\,\mu$ A (VDS = 600 V)

• Enhancement model: $V_{th} = 2.0 \sim 4.0 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA})$

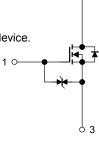
Maximum Ratings (Ta = 25°C)

Characte	eristic	Symbol	Rating	Unit	
Drain-source voltage		V _{DSS}	600	V	
Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)		V _{DGR}	600	V	
Gate-source voltage		V _{GSS}	±30	V	
	DC (Note 1)	ID	13	А	
Drain current	Pulse (t = 1 ms) (Note 1)	I _{DP}	52		
Drain power dissipat	ion (Tc = 25°C)	P _D	50	W	
Single pulse avalanche energy (Note 2)		E _{AS}	1033	mJ	
Avalanche current		I _{AR}	13	А	
Repetitive avalanche energy (Note 3)		E _{AR}	5.0	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Unit: mm \$\delta 3.2\pm 0.2 \dots 0.15 \dots 0.69\pm 0.2 \dots 0.15 \dots 0.15 \dots 0.69\pm 0.2 \dots 0.69\pm 0.2 \dots 0.15 \dots 0.25 \dots 0.15 \dots 0.25 \dots 0.15 \dots 0.25 \dots 0.25

Weight: 1.7 g (typ.)

Thermal Characteristics


Characteristic	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch-c)}	2.5	°C/W
Thermal resistance, channel to ambient	R _{th (ch-a)}	62.5	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C during use of the device.

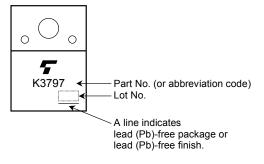
Note 2: V_{DD} = 90 V, T_{Ch} = 25°C (initial), L = 10.7 mH, I_{AR} = 13 A, R_G = 25 Ω

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

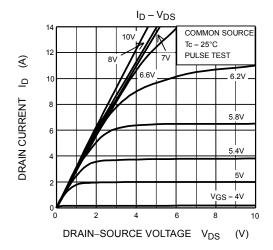
This transistor is an electrostatic-sensitive device. Handle with care.

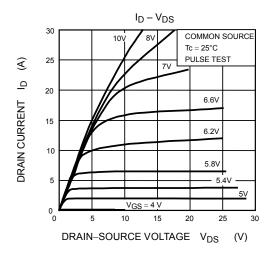
Ω 2

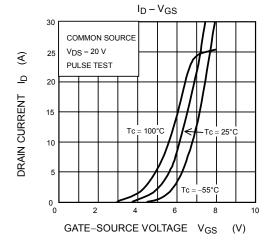
Electrical Characteristics (Ta = 25°C)

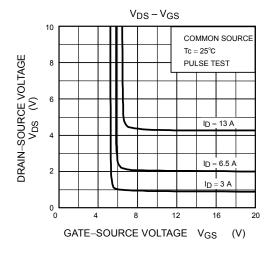

TOSHIBA

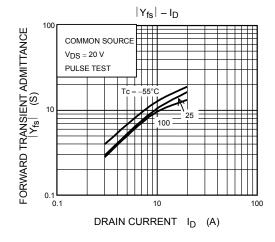
Char	racteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Gate-source brea	akdown voltage	V (BR) GSS	$I_G=\pm 10~\mu A,~V_{DS}=0~V$	±30	_	_	V
Drain cutoff curre	ent	I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V	_	100		μА
Drain-source bre	akdown voltage	V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	600	_	_	V
Gate threshold vo	oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	2.0	_	4.0	V
Drain-source ON	ain-source ON resistance $R_{DS (ON)}$ $V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$		V _{GS} = 10 V, I _D = 6.5 A		0.32	0.43	Ω
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 7.0 A	2.1	7.5	_	S
Input capacitance	put capacitance C _{iss}			_	3100	_	pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		20	_	
Output capacitance		C _{oss}		_	270	_	
	Rise time	t _r	V_{GS} V_{OV} V		60	_	- ns
Switching time	Turn-on time	t _{on}			110	_	
Switching time	Fall time	t _f			50	_	
	Turn-off time	t _{off}	Duty \leq 1%, $t_W = 10 \ \mu s$	_	215	_	
Total gate charge		Qg		_	62	_	
Gate-source charge		Q _{gs}	$V_{DD} \simeq 400 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$		40	_	nC
Gate-drain charge		Q _{gd}			22	_	

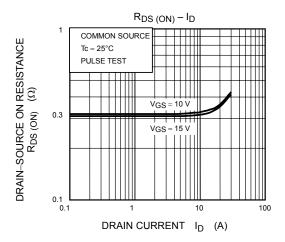

Source-Drain Ratings and Characteristics (Ta = 25°C)

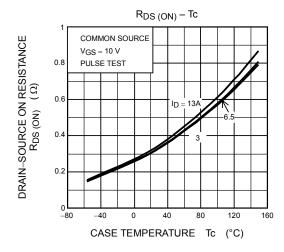

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current	(Note 1)	I _{DR}	_			13	Α
Pulse drain reverse current	(Note 1)	I _{DRP}	_	_	_	52	Α
Forward voltage (diode)		V _{DSF}	$I_{DR} = 13 \text{ A}, V_{GS} = 0 \text{ V}$	-	_	-1.7	V
Reverse recovery time		t _{rr}	$I_{DR} = 13 \text{ A}, V_{GS} = 0 \text{ V},$	_	1050	_	ns
Reverse recovery charge		Q _{rr}	dl _{DR} /dt = 100 A/μs	_	15	_	μС

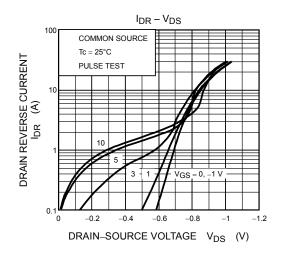

Marking

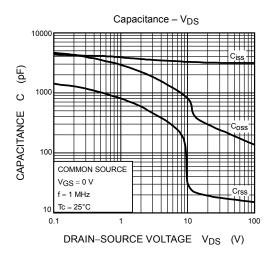


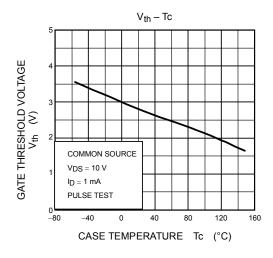

2 2005-01-24

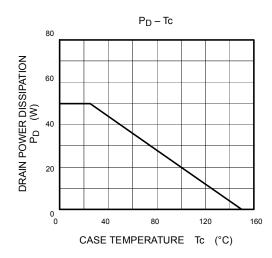


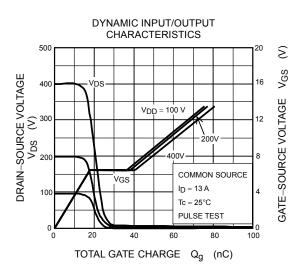


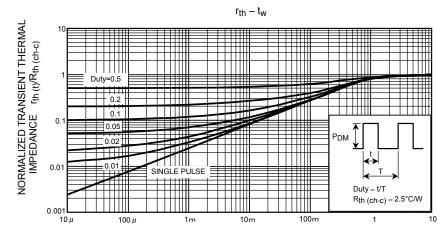


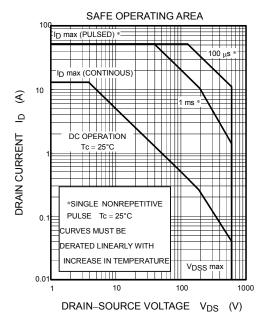


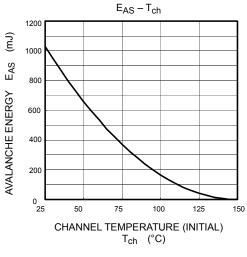


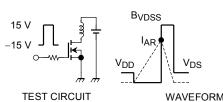

3 2005-01-24











PULSE WIDTH t_w (s)

$$R_G = 25~\Omega$$

$$V_{DD} = 90~V,~L = 10.7 mH$$

$$E_{AS} = \frac{1}{2} \cdot L \cdot I^2 \cdot \left(\frac{B_{VDSS}}{B_{VDSS} - V_{DD}} \right)$$

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.