顺源科技 SHENZHEN SUNYUAN TECHNOLOGY CO., LTD. **RMS SERIES ISOLATION AMPLIFIER ISO-RMS-P-O**

True RMS Signal Isolation Transmitter **ISO RMS-P-O Series**

FE/	ATURES:	APPLICATIONS:				
•	Accuracy grade: 0.1, 0.2, Wide Signal input 0-1KHz	•	Analog Signal Data Acquisition and Isolation			
•	0-200mV AC or DC Small Signal Conversion	•	Measurements of AC or DC Signal RMS			
•	High Linearity (Non-linearity<0.2%)	•	Ground Loop Elimination			
•	1.5KVAC isolation among Input, Output and Auxiliary Power	•	Measurements & Instrumentations			
•	Auxiliary Power Supply:5VDC 12VDC, 24VDC,etc.	•	Transducer Signal Transmitting and Receiving			
•	International Standard UL94-V0 Package	•	Long Distance Signal Transmitting			
•	Flaming Retardant, 24 PIN DIP Package	•	Non-electric quantity signal measurement			
•	Temperature Range: -45°C to +85°C	•	Signal Converter in Industrial Application			

DESCRIPTION

In general, the voltage-meter is used to test DC voltage signal, while by adding an AC/DC conversion circuit for AC signal testing. Currently, the AC voltage-meters prefer to use a simple average value response AC/DC Converter to decrease the cost and predigest the circuit. The common used average value response AC/DC Converter is of that a semi-wave or full wave line commutate type composed by operational amplifier and diode. This design features high accuracy and linearity as well as its low cost and simplified circuit design. But the disadvantage is that only can be applied to the application of testing standard sine wave voltage under no distortion, and error will occur if test the distortion sine wave. Furthermore, it is also not applicable to test square, rectangle, triangle, saw-tooth, and trapezium and ladder wave on account of the testing results is not in accordance with the fact.

The RMS Isolation Amplifier is designed to meet the requirements of electronic testing at the application where need high accuracy testing of various wave as above mentioned. The core component of RMS Isolation Amplifier is the highly integrated module, and it is configured and designed upon high accuracy amplifier and latest D/S calculation techniques. It can be used to test any type voltage or current wave without considering waveform or distortion. Above all, the RMS Isolation Amplifier features high accuracy, high linearity, wide dynamic current range, quick frequency response, and comprehensive testing applications. In addition, the product is easy to be used with only a few external components linked.

INPUT SPECIFICATIONS:

Continuous Isolation Voltage	3KVDC/rms
PW	±25%Vdd
Junction Temperature	- 25℃ ~ + 70℃
Lead Temperature (<10S)	+300°C
Output Voltage Load Min	2ΚΩ

Note: Any input specifications from users defined exceed the above specified range will probably cause a permanent damage to the module

MODEL SELECTION:

(DIN1X1)IS	60 <u>□RMS</u> 	<u>₽□_</u> — <u>O□</u>							
Input RMS Value									
0-200mV	0-1V								
Auxiliary pow	ver —								
P1:DC24V	P2:DC12V								
P3:DC5V	P4:DC15V	P8:Customized							
Output —									
O4: 0-5V	O5: 0-1	0V							
O6: 1-5V	O8: Cu	stomized (only vo	oltage output available)						
DIN1X1. for [NN Rail-mou	inted products							

INTXT: for DIN Rail-mounted products.

Model Selection Example:

E.g.1: Input: 0-200Mv AC or DC, Output: 0-5 V, Aux. Power Supply: 12VDC Model No.: ISO-200RMS-P2-O4 E.g.2: DIN Rial,Input: 0-200Mv AC or DC, Output: 0-5 V, Aux. Power Supply: 12VDC. Model No.: DIN1X1 ISO-200RMS-P2-O4

JENERAL PARAMETERS:								
Items		Test Condition	Min.	Тур.	Max.	Unit		
Isolated Voltage		AC / 50Hz / 1min	1500	3000		V (rms)		
Signal Input				0.2	1	V		
Min RMS Input					5	mV		
CMRRI				7	100	μV /V		
Gain Adj.		50 KΩ Multi-turn potentiometer		10		V/V		
Gain Temperature Drift				100		ppm/°C		
Non-linearity				0.2	0.5	%FSR		
Maladjusted Input Voltage	e			0.2	1	mV		
Input Impedance (Differen	ntial Mode)			8		MΩ		
Input Impedance (Comme	on Mode)			100		MΩ		
Signal Output				2	10	V		
Frequency Response		Vin<1V		1		KHz		
Loading Capability		Vout=10V	2			ΚΩ		
Output Ripple		No Filtering			10	mV		
Voltage Temperature Drift				25		μV/°C		
Auxiliany Power Supply	Voltage	Users Defined	3.3	12	24	VDC		
	Current	VD=12V(RL=2K)		15		mA		
Ambient Temperature			-45		+85	°C		
Storage Temperature			-55		+125	°C		

TYPICAL CONNECTION: (See Figure 1)

Figure 1: Typical Connection

Note:

- 1. CAV is an average value capacitor, and is used to calculate the average value to low frequency signal.
- 2. If wave peak KP≤2, no CAV connected and just applies to test the sine or triangle wave.
- If wave peak 2<KP≤4, the CAV capacitor is needed and its capacitance is of that between 1-10uF, and the membrane capacitor is recommended.
- 4. IN1 & IN2: the differential input, DC coupling and independent of signal polarity.
- 5. OUT: The Voltage Output (Vout)
- 6. EN: Input. If EN connected with VDD or No Connection, TRMS will be off function as can not obtain offset voltage. While at nominal working condition, it should be connected with GND or VSS.

TYPICAL APPLICATION

1: AC Signal RMS Testing (See Figure 2)

2: Large AC Signal RMS Testing (See Figure 3)

Figure 3: Large AC Signal RMS Testing

ERROR COMPARISION								
Signal Testing (Wave	Wave Peak Factor	Wave Form Factor	RMS Up/Kp	Average (Absolute Value)	Average Comparative			
		Кр	Kf	=Urms	Urms/Kf = U	Error(γ)		
No Distortion Sine Wave	1.414	1.111	0.707Up	0.637Up	0			
Semi-wave Commutation		2	1.571	0.5Up	0.318Up	-29.40%		
Square Wave D=50%		1	1	Up	Up	11.10%		
Postangla Waya	D=25%	2	2	0.5Up	0.25Up	-44.60%		
Rectangle wave	D=1%	10	10	0.577Up	0.01Up	-99%		
Triangle Wave		1.732	1.155	0.577Up	0.5Up	-3.80%		
Saw-tooth Wave		1.732	1.155	0.577Up	0.5Up	-3.80%		
SCD Wave	θ =110°	2.5	0.8	0.4Up	0.5Up	-39%		
SUR WAVE	θ =148 °	4	0.69	0.25Up	0.36Up	-59%		

顺源科技 SHENZHEN SUNYUAN TECHNOLOGY CO., LTD.

RMS SERIES ISOLATION AMPLIFIER ISO-RMS-P-O

Wave Peak Factor	Kp = Up / Urms	3			
Wave Form Factor	Kf = Urms / U				
For Sine Wave: Kp = 1.414; Kf = 1.111 So, Urms = 1.111U					
Set Practical Value = 1.11	True Value	= Urms			
γ = (Practical Value - True Value) / True Value X 100%					

DIP24PIN DIMENSION & PIN DESCRIPTION

INPUT	d.m Input	d.m Input	Input Power Supply Negative	Aux Power Supply Negative	Aux. Power Supply Positive	Isolalied Signal Output: Positive	Isolated Signal Output Negative	Gain Adjustment	NO Connection	Capacilance Negative	Capadiance Positive
EN	IN1	IN2	GND1	GND	VD	VOUT	GND2	ADJ	NC	CAV-	CAV+
1	2	3	4	9,10	11,12	13	14	15,16	21,22	23	24

DIN Rail External View & Dimension

Input Terminal

Output Terminal

DIN Rail Pin Definition

Pin	PIN	Description
1	Signal in	Input signal positive
2	Signal GND	Input signal negative
3	NC	No connection
4	NC	No connection
5	Power in	Auxiliary power positive
6	Power GND	Auxiliary power negative
7	NC	No connection
8	NC	No connection
9	Out-	Output signal negative
10	Out+	Output signal positive
11	NC	No connection
12	NC	No connection

External View

DIP 24PIN IC Package

DIN Rial Package