LM4562

Dual High Performance, High Fidelity Audio Operational Amplifier

General Description

The LM4562 is part of the ultra-low distortion, low noise, high slew rate operational amplifier series optimized and fully specified for high performance, high fidelity applications. Combining advanced leading-edge process technology with state-of-the-art circuit design, the LM4562 audio operational amplifiers deliver superior audio signal amplification for outstanding audio performance. The LM4562 combines extremely low voltage noise density ($2.7 \mathrm{nV} / \sqrt{\mathrm{Hz}})$ with vanishingly low THD +N (0.00003%) to easily satisfy the most demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LM4562 has a high slew rate of $\pm 20 \mathrm{~V} / \mu$ s and an output current capability of $\pm 26 \mathrm{~mA}$. Further, dynamic range is maximized by an output stage that drives $2 \mathrm{k} \Omega$ loads to within 1 V of either power supply voltage and to within 1.4 V when driving 600Ω loads. The LM4562's outstanding CMRR (120dB), PSRR (120dB), and $\mathrm{V}_{\mathrm{OS}}(0.1 \mathrm{mV})$ give the amplifier excellent operational amplifier DC performance.
The LM4562 has a wide supply range of $\pm 2.5 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$. Over this supply range the LM4562's input circuitry maintains excellent common-mode and power supply rejection, as well as maintaining its low input bias current. The LM4562 is unity gain stable. This Audio Operational Amplifier achieves outstanding AC performance while driving complex loads with values as high as 100pF.
The LM4562 is available in 8-lead narrow body SOIC, 8-lead Plastic DIP, and 8-lead Metal Can TO-99. Demonstration boards are available for each package.

Key Specifications

> - Power Supply Voltage Range $\pm 2.5 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$ $\mathrm{THD}+\mathrm{N}\left(\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}\right)$

Typical Application

Note: 1\% metal film resistors, 5\% polypropylene capacitors
Passively Equalized RIAA Phono Preamplifier

Order Number LM4562HA See NS Package Number - H08C

Absolute Maximum Ratings (Notes 1, 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Power Supply Voltage
($\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{V}^{-}$)
36 V
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Input Voltage
Output Short Circuit (Note 3)
Power Dissipation
ESD Susceptibility (Note 4)
ESD Susceptibility (Note 5)

Pins 1, 4, 7 and 8
200 V
Pins 2, 3, 5 and 6 100 V
Junction Temperature $150^{\circ} \mathrm{C}$ Thermal Resistance

$\theta_{\mathrm{JA}}(\mathrm{SO})$	$145^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}(\mathrm{NA})$	$102^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}(\mathrm{HA})$	$150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}(\mathrm{HA})$	$35^{\circ} \mathrm{C} / \mathrm{W}$
Temperature Range	
$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
Supply Voltage Range	$\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 17 \mathrm{~V}$

Electrical Characteristics for the LM4562 (Notes 1, 2) The specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ $2 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	LM4562		Units (Limits)
			Typical	Limit	
			(Note 6)	(Note 7)	
THD+N	Total Harmonic Distortion + Noise	$\begin{gathered} \hline \mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{rms}} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	$\begin{aligned} & 0.00003 \\ & 0.00003 \end{aligned}$	0.00009	\% (max)
IMD	Intermodulation Distortion	$\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$ Two-tone, 60 Hz \& $7 \mathrm{kHz} 4: 1$	0.00005		\%
GBWP	Gain Bandwidth Product		55	45	MHz (min)
SR	Slew Rate		± 20	± 15	V/us (min)
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }},-3 \mathrm{~dB}$ referenced to output magnitude at $\mathrm{f}=1 \mathrm{kHz}$	10		MHz
t_{s}	Settling time	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{V}}=-1,10 \mathrm{~V} \text { step, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & 0.1 \% \text { error range } \\ & \hline \end{aligned}$	1.2		$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise Voltage	$\mathrm{f}_{\mathrm{BW}}=20 \mathrm{~Hz}$ to 20 kHz	0.34	0.65	$\mu \mathrm{V}_{\text {RMS }}$ (max)
	Equivalent Input Noise Density	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 6.4 \end{aligned}$	4.7	$\begin{aligned} & \hline \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & (\max) \end{aligned}$
i_{n}	Current Noise Density	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.1 \end{aligned}$		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{V}_{\text {OS }}$	Offset Voltage		± 0.1	± 0.7	mV (max)
$\Delta \mathrm{V}_{\text {OS }} / \Delta$ Temp	Average Input Offset Voltage Drift vs Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	0.2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage	$\Delta \mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}($ Note 8)	120	110	dB (min)
$\mathrm{ISO}_{\mathrm{CH}-\mathrm{CH}}$	Channel-to-Channel Isolation	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 118 \\ & 112 \end{aligned}$		dB
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	10	72	$n A$ (max)
$\Delta \mathrm{l}_{\text {OS }} / \Delta$ Temp	Input Bias Current Drift vs Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	0.1		$n A /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OS }}$	Input Offset Current	$\mathrm{V}_{C M}=0 \mathrm{~V}$	11	65	nA (max)
$\mathrm{V}_{\text {IN-CM }}$	Common-Mode Input Voltage Range		$\begin{aligned} & \hline+14.1 \\ & -13.9 \end{aligned}$	$\begin{gathered} \hline(V+)-2.0 \\ (V-)+2.0 \end{gathered}$	V (min)
CMRR	Common-Mode Rejection	$-10 \mathrm{~V}<\mathrm{Vcm}<10 \mathrm{~V}$	120	110	$\mathrm{dB}(\mathrm{min})$
$\mathrm{Z}_{\text {IN }}$	Differential Input Impedance		30		$\mathrm{k} \Omega$
	Common Mode Input Impedance	$-10 \mathrm{~V}<\mathrm{Vcm}<10 \mathrm{~V}$	1000		$\mathrm{M} \Omega$

Symbol	Parameter	Conditions	LM4562		Units (Limits)
			Typical	Limit	
			(Note 6)	(Note 7)	
$\mathrm{A}_{\text {VOL }}$	Open Loop Voltage Gain	$-10 \mathrm{~V}<$ Vout $<10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$	140	125	dB (min)
		-10V<Vout<10V, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	140		
		$-10 \mathrm{~V}<\mathrm{Vout}<10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	140		
$\mathrm{V}_{\text {OUtMAX }}$	Maximum Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	± 13.6	± 12.5	$V(\min)$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 14.0		
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 14.1		
I	Output Current	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 17 \mathrm{~V}$	± 26	± 23	mA (min)
$\mathrm{I}_{\text {OUT-cc }}$	Instantaneous Short Circuit Current		$\begin{aligned} & +53 \\ & -42 \\ & \hline \end{aligned}$		mA
$\mathrm{R}_{\text {OUT }}$	Output Impedance	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}$ Closed-Loop Open-Loop	$\begin{gathered} 0.01 \\ 13 \end{gathered}$		Ω
$\overline{\mathrm{C}_{\text {LOAD }}}$	Capacitive Load Drive Overshoot	100pF	16		\%
$\mathrm{I}_{\text {S }}$	Total Quiescent Current	$\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$	10	12	mA (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: Amplifier output connected to GND, any number of amplifiers within a package.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50 ().
Note 6: Typical specifications are specified at $+25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: PSRR is measured as follows: V_{OS} is measured at two supply voltages, $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$. PSRR $=120 \log \left(\Delta \mathrm{~V}_{\mathrm{OS}} / \Delta \mathrm{V}_{\mathrm{S}}\right) \mathrm{I}$.

Typical Performance Characteristics

THD+N vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}$
$R_{L}=\mathbf{2 k} \Omega$

201572k8

THD+N vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$ $R_{L}=\mathbf{2 k} \Omega$

THD+N vs Output Voltage $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=\mathbf{2 k} \Omega$

$201572 i 4$

THD+N vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}$ $R_{L}=600 \Omega$

THD+N vs Output Voltage
$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{L}=10 \mathrm{k} \Omega$

20157212

THD + N vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=600 \Omega$

THD+N vs Output Voltage
$V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$R_{L}=10 \mathrm{k} \Omega$

THD+N vs Output Voltage
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{\mathrm{L}}=10 \mathrm{k} \Omega$

THD+N vs Frequency

20157263
THD+N vs Frequency

20157264
THD+N vs Frequency
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$
$R_{L}=600 \Omega$

20157262
THD+N vs Frequency
$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\mathrm{RMS}}$

20157259
THD+N vs Frequency
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$
$R_{L}=600 \Omega$

20157267
THD+N vs Frequency

20157268

IMD vs Output Voltage
$V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$R_{L}=2 k \Omega$

THD+N vs Frequency

20157266
IMD vs Output Voltage
$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{L}=2 k \Omega$

$201572 e 6$

IMD vs Output Voltage
$V_{C C}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=2 k \Omega$

Current Noise Density vs Frequency

0157216

201572h7

IMD vs Output Voltage
$V_{C C}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}$
$R_{L}=10 k \Omega$

Voltage Noise Density vs Frequency

201572h6

Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$
$A_{V}=0 d B, R_{L}=2 k \Omega$

201572 c8

Crosstalk vs Frequency
$V_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 \mathrm{~dB}, R_{L}=2 k \Omega$

Crosstalk vs Frequency
$V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 d B, R_{L}=2 k \Omega$

201572c7
Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}_{\mathrm{RMS}}$
$A_{v}=0 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 d B, R_{L}=2 k \Omega$

201572c6
Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 d B, R_{L}=2 k \Omega$

Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1 \mathrm{~V}_{\mathrm{RMS}}$
$A_{V}=0 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$

FREQUENCY (Hz)
201572n8

201572d6
Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 d B, R_{L}=600 \Omega$

Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 d B, R_{L}=600 \Omega$

Crosstalk vs Frequency
$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}_{\text {RMS }}$ $A_{V}=0 d B, R_{L}=600 \Omega$

Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 d B, R_{L}=600 \Omega$

201572d5
Crosstalk vs Frequency
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}_{\mathrm{RMS}}$ $A_{V}=0 d B, R_{L}=600 \Omega$

201572d9

FREQUENCY (Hz)
201572n3

PSRR+ vs Frequency

$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{L}=\mathbf{2 k} \Omega, V_{\text {RIPPLE }}=200 \mathrm{mVpp}$

FREQUENCY (Hz)
20157201

 $A_{V}=0 \mathrm{~dB}, R_{L}=10 \mathrm{k} \Omega$

FREQUENCY (Hz)
201572n4
PSRR- vs Frequency
$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{L}=2 k \Omega, V_{\text {RIPPLE }}=200 \mathrm{mVpp}$

PSRR- vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {RIPPLE }}=200 \mathrm{mVpp}$

20157206

PSRR-vs Frequency
$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\text {RIPPLE }}=200 \mathrm{mVpp}$

20157205

SRR- vs Frequency
$V_{C C}=17 \mathrm{~V}, V_{E E}=-17 \mathrm{~V}$
$R_{L}=600 \Omega, V_{\text {RIPPLE }}=200 \mathrm{mVpp}$

FREQUENCY (Hz)
201572m6
PSRR- vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=600 \Omega, V_{\text {RIPPLE }}=200 \mathrm{mVpp}$

FREQUENCY (Hz)
201572m4

CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$R_{L}=600 \Omega$

20157209

CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}$ $R_{L}=600 \Omega$

201572g5
CMRR vs Frequency
$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$R_{L}=600 \Omega$

201572
CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$R_{L}=600 \Omega$

201572f6
CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$
$R_{L}=10 k \Omega$

CMRR vs Frequency
$V_{C C}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}$ $R_{\mathrm{L}}=\mathbf{1 0 k} \Omega$

201572g4
Output Voltage vs Load Resistance
$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$
THD $+N=1 \%$

201572h1
Output Voltage vs Load Resistance
$V_{D D}=17 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-17 \mathrm{~V}$
THD $+N=1 \%$

CMRR vs Frequency
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$ $R_{L}=10 \mathrm{k} \Omega$

201572 f5
Output Voltage vs Load Resistance
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$

201572h0
Output Voltage vs Load Resistance
$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
THD $+N=1 \%$

Output Voltage vs Supply Voltage

 $R_{L}=\mathbf{2 k} \Omega, T H D+N=1 \%$

201572ز9

Output Voltage vs Supply Voltage

$R_{L}=10 k \Omega, T H D+N=1 \%$

Supply Current vs Supply Voltage
$R_{L}=600 \Omega$

Output Voltage vs Supply Voltage $R_{L}=600 \Omega, T H D+N=1 \%$

201572j8
Supply Current vs Supply Voltage

201572j6
Supply Current vs Supply Voltage $R_{L}=10 k \Omega$

201572j0
Small-Signal Transient Response $A_{V}=1, C_{L}=10 \mathrm{pF}$

Gain Phase vs Frequency

201572j1
Small-Signal Transient Response

Application Information

DISTORTION MEASUREMENTS

The vanishingly low residual distortion produced by LM4562 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.
The LM4562's low residual distortion is an input referred internal error. As shown in Figure 1, adding the 10Ω resistor connected between the amplifier's inverting and non-inverting inputs changes the amplifier's noise gain. The result is that
the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 1.
This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so produces distortion components that are within the measurement equipment's capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

FIGURE 1. THD+N and IMD Distortion Test Circuit

The LM4562 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100 pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.
Capacitive loads greater than 100 pF must be isolated from the output. The most straightforward way to do this is to put
a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

20157227
Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.
Noise Measurement Circuit Total Gain: $115 \mathrm{~dB} @ \mathrm{f}=1 \mathrm{kHz}$ Input Referred Noise Voltage: $\mathrm{e}_{\mathrm{n}}=\mathrm{V} 0 / 560,000$ (V)

TYPICAL APPLICATIONS

$A_{V}=34.5$
$\mathrm{F}=1 \mathrm{kHz}$
$E_{n}=0.38 \mu \mathrm{~V}$
A Weighted

Balanced to Single Ended Converter

Adder/Subtracter

Sine Wave Oscillator

$$
f_{o}=\frac{1}{2 \pi R C}
$$

Second Order High Pass Filter
(Butterworth)

$$
\begin{aligned}
\text { if } \mathrm{C} 1 & =\mathrm{C} 2=\mathrm{C} \\
\mathrm{R} 1 & =\frac{\sqrt{2}}{2 \omega_{0} \mathrm{C}} \\
\mathrm{R} 2 & =2 \cdot \mathrm{R}_{1}
\end{aligned}
$$

Illustration is $f_{0}=1 \mathrm{kHz}$

Second Order Low Pass Filter (Butterworth)

20157236

$$
\text { if } \begin{aligned}
\mathrm{R} 1 & =\mathrm{R} 2=\mathrm{R} \\
\mathrm{C} 1 & =\frac{\sqrt{2}}{\omega_{0} R} \\
\mathrm{C} 2 & =\frac{\mathrm{C} 1}{2}
\end{aligned}
$$

Illustration is $f_{0}=1 \mathrm{kHz}$

20157237

$$
f_{0}=\frac{1}{2 \pi C 1 R 1}, Q=\frac{1}{2}\left(1+\frac{R 2}{R 0}+\frac{R 2}{R G}\right), A_{B P}=Q A_{L P}=Q A_{L H}=\frac{R 2}{R G}
$$

Illustration is $f_{0}=1 \mathrm{kHz}, \mathrm{Q}=10, A_{B P}=1$
AC/DC Converter

20157240
Tone Control

20157241

$$
\begin{aligned}
f_{L} & =\frac{1}{2 \pi R 2 C 1}, f_{L B}=\frac{1}{2 \pi R 1 C 1} \\
f_{H} & =\frac{1}{2 \pi R 5 C 2}, f_{H B}=\frac{1}{2 \pi(R 1+R 5+2 R 3) C 2}
\end{aligned}
$$

$\mathrm{f}_{\mathrm{L}}=32 \mathrm{~Hz}, \mathrm{f}_{\mathrm{LB}}=320 \mathrm{~Hz}$
 $\mathrm{f}_{\mathrm{H}}=11 \mathrm{kHz}, \mathrm{f}_{\mathrm{HB}}=1.1 \mathrm{kHz}$

RIAA Preamp

$\mathrm{A}_{\mathrm{v}}=35 \mathrm{~dB}$
$\mathrm{E}_{\mathrm{n}}=0.33 \mu \mathrm{~V}$
$\mathrm{S} / \mathrm{N}=90 \mathrm{~dB}$
$\mathrm{f}=1 \mathrm{kHz}$
A Weighted
A Weighted, $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV}$
@f $=1 \mathrm{kHz}$

Balanced Input Mic Amp

$$
\begin{aligned}
& \text { If } R 2=R 5, R 3=R 6, R 4=R 7 \\
& V 0=\left(1+\frac{2 R 2}{R 1}\right) \frac{R 4}{R 3}(V 2-V 1)
\end{aligned}
$$

Illustration is:
$\mathrm{V} 0=101(\mathrm{~V} 2-\mathrm{V} 1)$

fo (Hz)	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
32	$0.12 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	$75 \mathrm{k} \Omega$	500Ω
64	$0.056 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
125	$0.033 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	510Ω
250	$0.015 \mu \mathrm{~F}$	$0.82 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
500	8200 pF	$0.39 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
1 k	3900 pF	$0.22 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
2 k	2000 pF	$0.1 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
4 k	1100 pF	$0.056 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
8 k	510 pF	$0.022 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
16 k	330 pF	$0.012 \mu \mathrm{~F}$	$51 \mathrm{k} \Omega$	510Ω

Note 9: At volume of change $= \pm 12 \mathrm{~dB}$
$\mathrm{Q}=1.7$
Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

Revision History

Rev	Date	Description
1.0	$08 / 16 / 06$	Initial release.
1.1	$08 / 22 / 06$	Updated the Instantaneous Short Circuit Current specification.
1.2	$09 / 12 / 06$	Updated the three $\pm 15 \mathrm{~V}$ CMRR Typical Performance Curves.
1.3	$09 / 26 / 06$	Updated interstage filter capacitor values on page 1 Typical Application schematic.
1.4	$05 / 03 / 07$	Added the "general note" under the EC table.

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com

| | National Semiconductor
 Americas Customer | National Semiconductor Europe
 Customer Support Center | National Semiconductor Asia
 Pacific Customer Support Center
 Support Center | Fax: $+49(0)$ ppo-530-85-86 |
| :--- | :--- | :--- | :--- | :--- | | National Semiconductor Japan |
| :--- |
| Customer Support Center |
| Email: |

