Preferred Device

Complementary Silicon Plastic Power Transistors

TO-220, NPN & PNP Devices

... designed for use as high-frequency drivers in audio amplifiers.

- $h_{FE} = 100$ (Min) @ $I_C = 0.5$ Adc = 10 (Min) @ $I_C = 2.0$ Adc
- Collector–Emitter Sustaining Voltage –

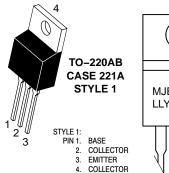
 $V_{CEO(sus)} = 350 \text{ Vdc (Min)} - MJE15034, MJE15035$

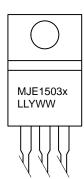
- High Current Gain Bandwidth Product $f_T = 30 \text{ MHz (Min)} @ I_C = 500 \text{ mAdc}$
- TO-220AB Compact Package
- Epoxy meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Machine Model: C Human Body Model: 3B

MAXIMUM RATINGS

Rating	Symbol	MJE15034 MJE15035	Unit
Collector–Emitter Voltage	V _{CEO}	350	Vdc
Collector-Base Voltage	V_{CB}	350	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current - Continuous - Peak	I _C	4.0 8.0	Adc
Base Current	I _B	1.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	50 0.40	Watts W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2.0 0.016	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	62.5	°C/W



http://onsemi.com

4.0 AMPERES
POWER TRANSISTORS
COMPLEMENTARY
SILICON
350 VOLTS
50 WATTS

MARKING DIAGRAM & PIN ASSIGNMENT

 MJE1503x
 = Device Code

 LL
 = Location Code

 Y
 = Year

 WW
 = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MJE15034	TO-220AB	50 Units/Rail
MJE15035	TO-220AB	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

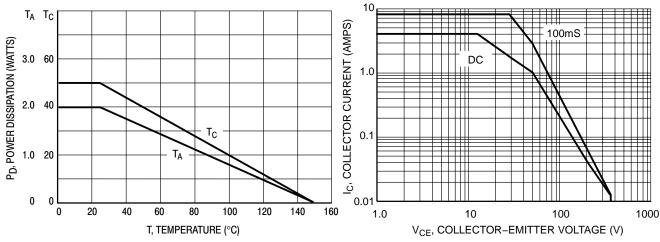


Figure 1. Power Derating

Figure 2. Active Region Safe Operating Area

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit	
OFF CHARACTERISTICS						
Collector–Emitter Sustaining Voltage (Note 1)	$(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	350	-	Vdc	
Collector Cutoff Current	$(V_{CB} = 350 \text{ Vdc}, I_{E} = 0)$	I _{CBO}	-	10	μAdc	
Emitter Cutoff Current	$(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	I _{EBO}	_	10	μAdc	
ON CHARACTERISTICS (Note 1)						
DC Current Gain	$ \begin{aligned} &(I_{C} = 0.1 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \\ &(I_{C} = 0.5 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \\ &(I_{C} = 1.0 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \\ &(I_{C} = 2.0 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \end{aligned} $	h _{FE}	100 100 50 10	- - -	-	
Collector–Emitter Saturation Voltage	$(I_C = 1.0 \text{ Adc}, I_B = 0.1 \text{ Adc})$	V _{CE(sat)}	-	0.5	Vdc	
Base–Emitter On Voltage	$(I_C = 1.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$	V _{BE(on)}	-	1.0	Vdc	
DYNAMIC CHARACTERISTICS						
Current Gain – Bandwidth Product (Note 2) (I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 1.0 MHz)		f _T	30	-	MHz	

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. 2. $f_T = |h_{fe}| \bullet f_{test}$.

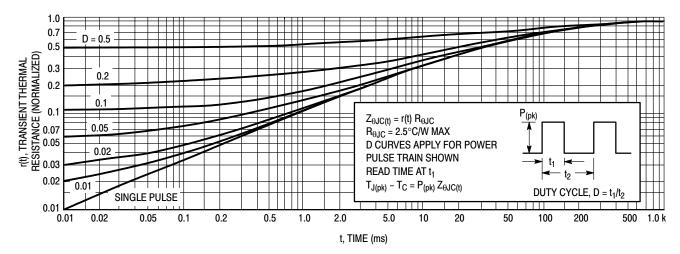


Figure 3. Thermal Response

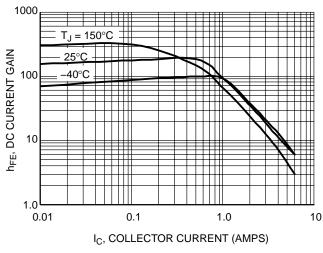


Figure 4. DC Current Gain, V_{CE} = 5.0 V NPN MJE15034

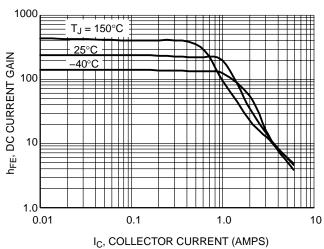


Figure 5. DC Current Gain, V_{CE} = 5.0 V PNP MJE15035

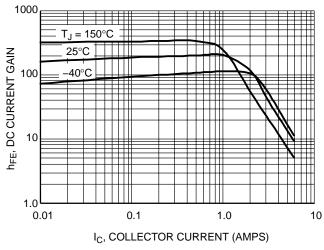


Figure 6. DC Current Gain, V_{CE} = 20 V NPN MJE15034

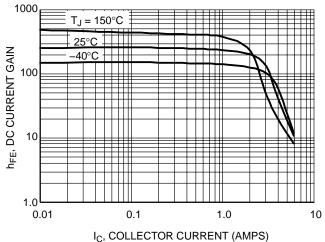


Figure 7. DC Current Gain, V_{CE} = 20 V PNP MJE15035

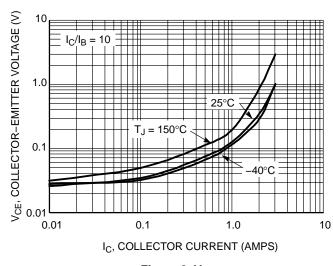


Figure 8. V_{CE(sat)} NPN MJE15034

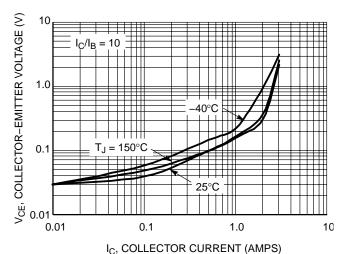
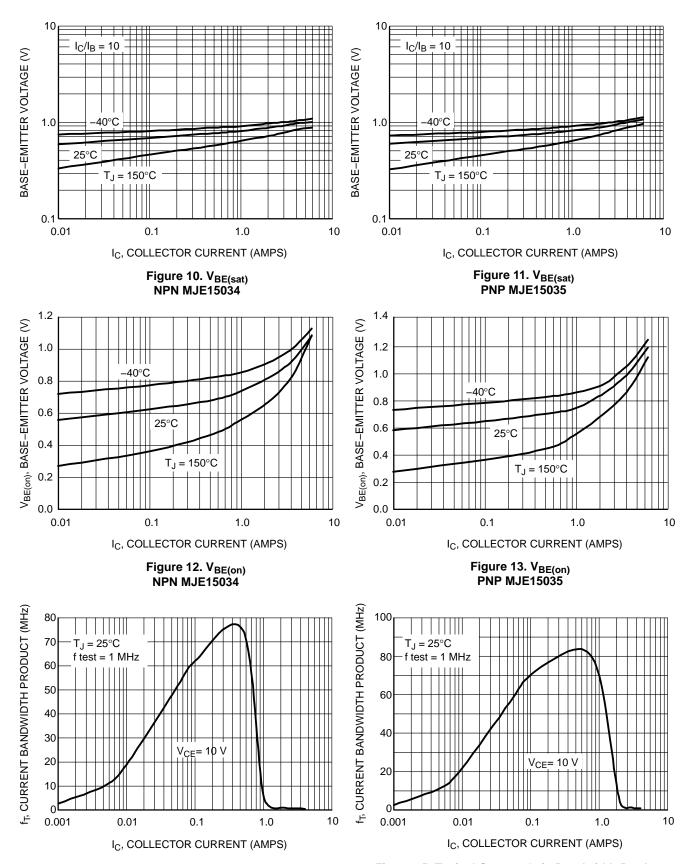


Figure 9. V_{CE(sat)} PNP MJE15035



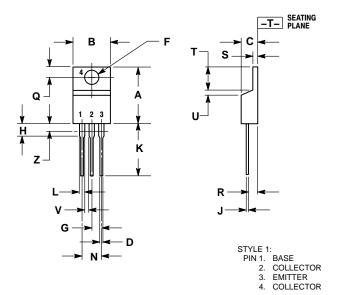

Figure 14. Typical Current Gain Bandwidth Product NPN MJE15034

Figure 15. Typical Current Gain Bandwidth Product PNP MJE15035

PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB

CASE 221A-09 **ISSUE AA**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.