

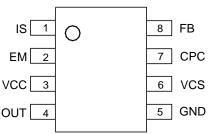
LOW POWER OFF-LINE PRIMARY SIDE REGULATION CONTROLLER

Description

The AP3775H is a high performance AC/DC power supply controller for battery charger and adapter applications. It can meet less than 10mW standby power for "Super Star" charger criteria. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The AP3775H provides accurate constant voltage (CV), constant current (CC) and outstanding dynamic performance without requiring an opto-coupler. It also eliminates the need of loop compensation circuitry while maintaining stability.

The AP3775H achieves excellent regulation and high average efficiency, less than 10mW no-load power consumption, less than 1s startup time for 10mW standby power solutions and less than 0.5s startup time for 30mW standby power solutions. When AP3775H is used with AP4341 series, good under-shoot performance and higher conversion efficiency can be achieved.


The AP3775H is available in SO-8 package.

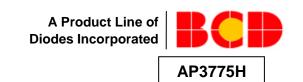
Features

- Primary Side Control for Eliminating Opto-coupler
- 10mW No-load Input Power
- Compensation for External Component Temperature Variations
- Flyback Topology in DCM Operation
- Random Frequency Adjustment to Reduce System EMI
- Built-in Soft Start
- Over Voltage Protection
- Over Temperature Protection
- Short Circuit Protection
- AP4341 Series Awaking Signal Detection
- Audio Noise Reduction
- Internal Cable Compensation
- SO-8 Package
- Totally Lead-free & Fully RoHS Compliant (Note 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

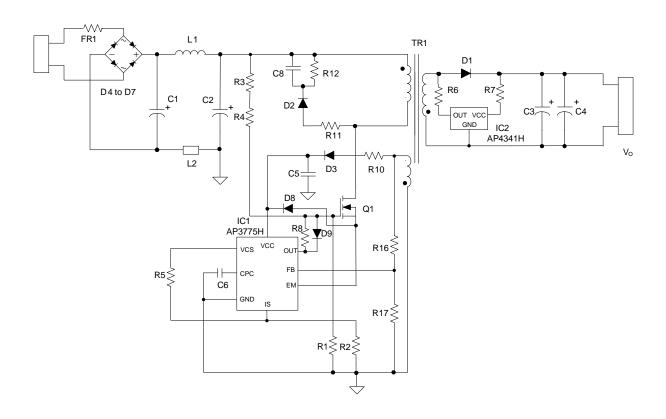
Pin Assignments

(Top View)

SO-8

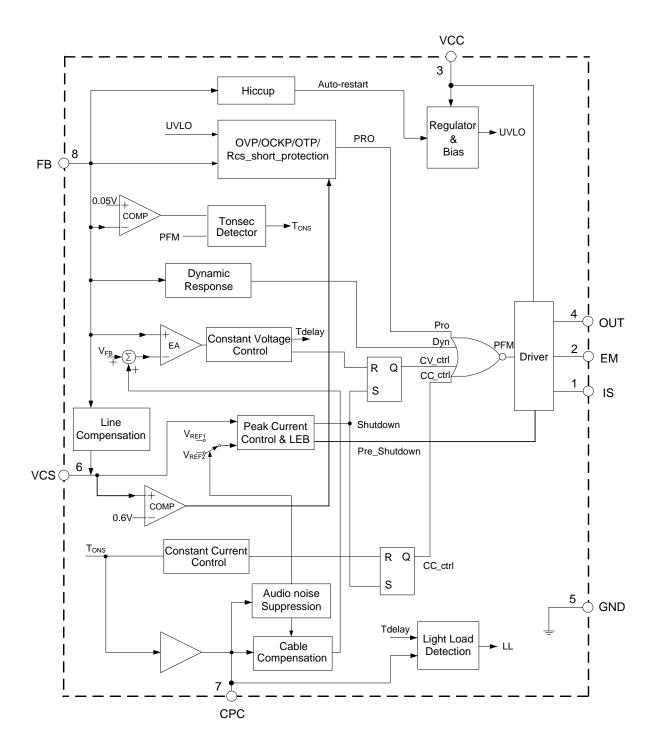

Applications

- Adapter/Chargers for Shaver, Cell/Cordless Phones, PDAs, MP3 and Other Portable Apparatus
- Standby and Auxiliary Power Supplies

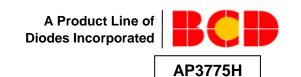

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit



Pin Descriptions


Pin Number	Pin Name	Function			
1	IS	Primary current sensing			
2	EM	onnected to the source of external power MOSFET			
3	VCC	ower supply			
4	OUT	Driving the gate of external power MOSFET			
5	GND	Ground			
6	vcs	Current sensing voltage			
7	CPC	Connecting a capacitor for output cable compensation			
8	FB	Voltage feedback			

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating	Unit
V _{CC}	Voltage at VCC to GND	-0.3 to 25	V
-	Voltage at OUT, EM to GND	-0.3 to 23	V
-	Voltage at IS, VCS, CPC to GND	-0.3 to 7	V
-	FB Input	-40 to 10	V
_	Output Current at OUT	Internally limited	А
T _J	Operating Junction Temperature	+150	°C
T _{STG}	Storage Temperature	-65 to +150	°C
T_{LEAD}	Lead Temperature (Soldering, 10 Sec)	+300	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	190	°C/W

Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

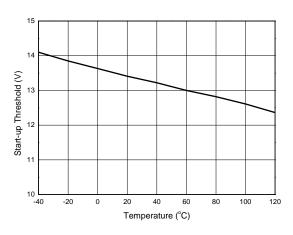
Electrical Characteristics (@TA=+25°C, VCC=15V, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
UVLO SECTION								
V _{TH} (ST)	Start-up Threshold	_	11	13	14	V		
V _{OPR} (Min)	Minimal Operating Voltage	After turning on	2.5	3.0	3.6			
STANDBY CURRENT SE	CTION							
I _{ST}	Start-up Current	V _{CC} =V _{TH} (ST)-1V, Before turning on	0	0.2	0.6			
-	Standby Current	-	60	100	120	μΑ		
I _{CC} (OPR)	Operating Current	Static current	160	250	300]		
CURRENT SENSE SECTI	CURRENT SENSE SECTION							
V _{CS}	Current Sense Threshold (Note 5)	-	425	450	465	mV		
t _{LEB}	Leading Edge Blanking The minimum power switch turn on time		300	500	700	ns		
FEEDBACK INPUT SECTION								
I _{FB}	Feedback Pin Input Leakage Current	V _{FB} =4V	4	6	8	μА		
V _{FB}	Feedback Threshold Voltage	_	3.62	3.68	3.73	V		

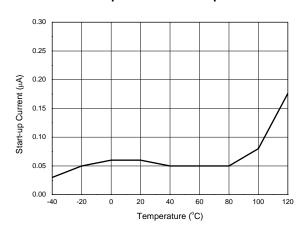
AP3775H

Electrical Characteristics (Cont.) (@T_A=+25°C, V_{CC}=15V, unless otherwise specified.)

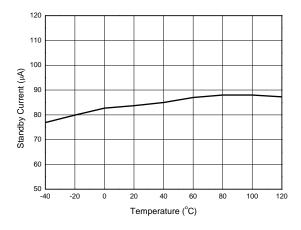
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
LINE COMPENSATION SECTION									
g_{m}	Line Compensation Transconductance (Note 6)	-	0.55	0.7	0.85	μS			
CABLE COMPENSATIO	CABLE COMPENSATION SECTION								
V _{FB _CABLE} /V _{FB} %	Cable Compensation Voltage	_	5	6	7	%			
DRIVE OUTPUT SECTION	DN		•						
V_{GATE}	Gate Voltage	V _{CC} =15V, C _L =1nF	5.5	6.5	7.5	V			
I _{SOURCE}	Drive Source Current	_	30	34	40	mA			
R _{SINK}	Sink Resistance	_	2	5	7	Ω			
t _{OFF} (MAX)	t _{OFF} (MAX) Maximum Off Time		15	19	30	ms			
DYNAMIC FUNCTION S	ECTION		•						
t _D	Delay Time for Dynamic Function	_	100	140	220	μS			
$V_{TRIGGER}$	Trigger Voltage for Dynamic Function	_	60	100	120	mV			
PROTECTION SECTION	I								
tonp(MAX)	Maximum On Time of Primary Side	_	16	25	40	μS			
V _{CS} (MAX)	Over Current Protection	_	0.49	0.55	0.62	V			
V _{FB} (OVP)	Over Voltage Protection	_	6.5	7.5	8.5	V			
V _{FB} (SCP)	Short Circuit Protection	-	2.18	2.3	2.42	V			
-	Over Temperature Protection (Note 7)	Surface temperature	+125	+160	-	°C			
_	_ Temperature Hysteresis (Note 7)		+40	_	_	°C			

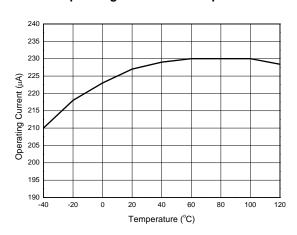

Notes: 5. V_{CS} is an equivalent parameter tested in closed loop to ensure the precise constant current. 6. Line compensation voltage on CS pin: $\Delta V_{CS} = V_{IN_DC} \cdot \frac{N_{AUX}}{N_{PRI}} \cdot \frac{R_{17}}{R_{16} + R_{17}} \cdot g_m \cdot R_5$

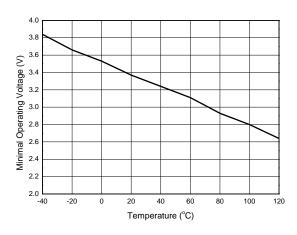
7. Guaranteed by design.



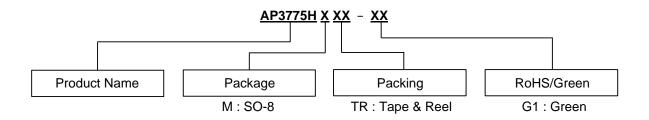
Performance Characteristics


Start-up Threshold vs. Temperature


Start-up Current vs. Temperature

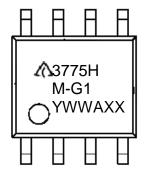

Standby Current vs. Temperature

Operating Current vs. Temperature



Minimal Operating Voltage vs. Temperature

Ordering Information



Diodes IC's Pb-free products with "G1" suffix in the part number, are RoHS compliant and green.

Package	Temperature Range	Part Number	Marking ID	Packing	
SO-8	-40 to +85°C	AP3775HMTR-G1	3775HM-G1	4000/Tape & Reel	

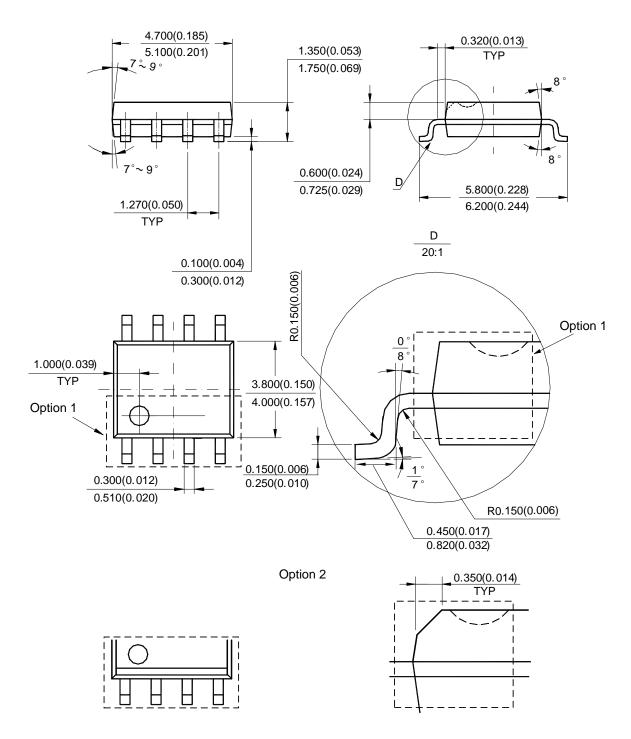
Marking Information

(Top View)

First and Second Lines: Logo and Marking ID

Third Line: Date Code

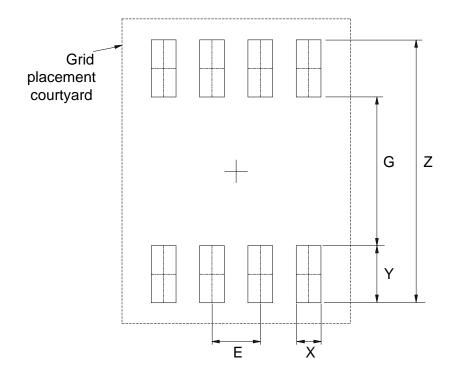
Y: Year


WW: Work Week of Molding A: Assembly House Code XX: 7th and8th Digits of Batch No.

AP3775H Document number: DS37048 Rev. 2 - 1 7 of 10 www.diodes.com

Package Outline Dimensions (All dimensions in mm(inch).)

(1) Package Type: SO-8



Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

(1) Package Type: SO-8

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com